Advertisement

Determination of αS using jet rates at LEP with the OPAL detector

  • The OPAL Collaboration
Experimental Physics

Abstract.

Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure in the LEP energy range by fitting an expression in which \({\user1{\mathcal{O}}}{\left( {\alpha ^{2}_{{\text{s}}} } \right)}\)calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of () was determined to be

αS(M Z ) = 0.1177 ± 0.0006 (stat.) ± 0.0012 (expt.) ± 0.0010 (had.) ± 0.0032 (theo.).

Keywords

Field Theory Elementary Particle Quantum Field Theory Energy Range Opal Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Bethke, Nucl. Phys. Proc. Suppl. 121, 74 (2003)CrossRefADSGoogle Scholar
  2. 2.
    OPAL Collaboration, P. D. Acton et al. , Z. Phys. C 59, 1 (1993)CrossRefGoogle Scholar
  3. 3.
    OPAL Collaboration, G. Alexander et al. , Z. Phys. C 72, 191 (1996)CrossRefGoogle Scholar
  4. 4.
    OPAL Collaboration, K. Ackerstaff et al. , Z. Phys. C 75, 193 (1997)CrossRefGoogle Scholar
  5. 5.
    OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 16, 185 (2000)CrossRefADSGoogle Scholar
  6. 6.
    JADE and OPAL Collaborations, P. Pfeifenschneider et al. , Eur. Phys. J. C 17, 19 (2000)CrossRefADSGoogle Scholar
  7. 7.
    OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 40, 287 (2005)CrossRefADSGoogle Scholar
  8. 8.
    OPAL Collaboration, K. Ahmet et al. , Nucl. Instrum. Meth. A 305, 275 (1991)CrossRefGoogle Scholar
  9. 9.
    OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 14, 373 (2000)CrossRefADSGoogle Scholar
  10. 10.
    OPAL Collaboration, M. Arignon et al. , Nucl. Instrum. Meth. A 313, 103 (1992)CrossRefGoogle Scholar
  11. 11.
    OPAL Collaboration, J. T. M. Baines et al. , Nucl. Instrum. Meth. A 325, 271 (1993)CrossRefGoogle Scholar
  12. 12.
    OPAL Collaboration, J. Allison et al. , Nucl. Instrum. Meth. A 317, 47 (1992)CrossRefGoogle Scholar
  13. 13.
    T. Sjöstrand et al. , Comput. Phys. Commun. 135, 238 (2001)CrossRefGoogle Scholar
  14. 14.
    T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)CrossRefADSGoogle Scholar
  15. 15.
    G. Corcella et al. , JHEP 01, 010 (2001)Google Scholar
  16. 16.
    OPAL Collaboration, G. Alexander et al. , Z. Phys. C 69, 534 (1996)Google Scholar
  17. 17.
    OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 35, 293 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    S. Jadach, B. Ward, and Z. Was, Comput. Phys. Commun. 130, 260 (2000)CrossRefADSzbMATHGoogle Scholar
  19. 19.
    M. Skrzypek, S. Jadach, W. Placzek, and Z. Was, Comput. Phys. Commun. 94, 216 (1996)CrossRefADSGoogle Scholar
  20. 20.
    J. Fujimoto et al. , Comput. Phys. Commun. 100, 128 (1997)CrossRefGoogle Scholar
  21. 21.
    ALEPH, DELPHI, L3, OPAL and SLD Collaborations, A combination of preliminary electroweak measurements and constraints on the Standard Model, 2003, http://www.arXiv.org/abs/hep-ex/0312023hep-ex/0312023Google Scholar
  22. 22.
    S. Catani, Y. Dokshitzer, M. Olsson, G. Turnock, and B. Webber, Phys. Lett. B 269, 432 (1991)CrossRefADSGoogle Scholar
  23. 23.
    Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, JHEP 08, 001 (1997)CrossRefADSGoogle Scholar
  24. 24.
    JADE Collaboration, W. Bartel et al. , Z. Phys. C 33, 23 (1986)CrossRefGoogle Scholar
  25. 25.
    F. Abe et al. , Phys. Lett. D 45, 1448 (1992)Google Scholar
  26. 26.
    R. K. Ellis, D. A. Ross, and A. E. Terrano, Nucl. Phys. B 178, 421 (1981)CrossRefADSGoogle Scholar
  27. 27.
    S. Catani, L. Trentadue, G. Turnock, and B. Webber, Nucl. Phys. B 407, 3 (1992)CrossRefADSGoogle Scholar
  28. 28.
    A. Banfi, G. P. Salam, and G. Zanderighi, JHEP 01, 018 (2002)CrossRefADSGoogle Scholar
  29. 29.
    G. Dissertori and M. Schmelling, Phys. Lett. B 361, 167 (1995)CrossRefADSGoogle Scholar
  30. 30.
    OPAL Collaboration, P. D. Acton et al. , Z. Phys. C 59, 1 (1993)CrossRefGoogle Scholar
  31. 31.
    OPAL Collaboration, K. Ackerstaff et al. , Eur. Phys. J. C 2, 441 (1998)CrossRefADSGoogle Scholar
  32. 32.
    OPAL Collaboration, G. Alexander et al. , Z. Phys. C 52, 175 (1991)CrossRefGoogle Scholar
  33. 33.
    S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski, Phys. Lett. 12, 57 (1964)ADSGoogle Scholar
  34. 34.
    OPAL Collaboration, K. Ackerstaff et al. , Phys. Lett. B 391, 221 (1997)CrossRefGoogle Scholar
  35. 35.
    OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 33, 173 (2004)CrossRefADSGoogle Scholar
  36. 36.
    OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 16, 185 (2000)CrossRefADSGoogle Scholar
  37. 37.
    OPAL Collaboration, G. Abbiendi et al. , Phys. Lett. B 493, 249 (2000)CrossRefGoogle Scholar
  38. 38.
    OPAL Collaboration, K. Ackerstaff et al. , Z. Phys. C 75, 193 (1997)CrossRefGoogle Scholar
  39. 39.
    M. Dasgupta and G. P. Salam, JHEP 08, 032 (2002)Google Scholar
  40. 40.
    R. W. L. Jones, M. Ford, G. P. Salam, H. Stenzel, and D. Wicke, JHEP 12, 007 (2003)CrossRefADSGoogle Scholar
  41. 41.
    L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum. Meth. A 270, 110 (1988)CrossRefADSGoogle Scholar
  42. 42.
    S. Eidelman et al. , Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • The OPAL Collaboration

There are no affiliations available

Personalised recommendations