Soft hadron ratios at the LHC

  • J. RafelskiEmail author
  • J. Letessier
Experimental Physics


High precision soft hadron abundance data produced in relativistic nuclear collisions at LHC at \(\sqrt{s_{\rm NN}}\le 5500\) GeV will become available beginning in 2007/8. We explore, within the statistical hadronization model, how these results can help us understand the properties of the deconfined quark-gluon phase at its breakup. We make assumptions about the physical properties of the fireball and obtain particle production predictions. Then, we develop a strategy to measure parameters of interest, such as strangeness occupancy γ s , chemical potentials μ B and μ S .


Field Theory Elementary Particle Quantum Field Theory High Precision Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.Z. Huang, J. Rafelski, AIP Conf. Proc. 756, 210 (2005) [hep-ph/0501187]ADSGoogle Scholar
  2. 2.
    M.J. Fromerth, J. Rafelski, Hadronization of the quark universe, astro-ph/0211346Google Scholar
  3. 3.
    J. Letessier, J. Rafelski, Hadrons and quark-gluon plasma, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 18, 1 (2002)Google Scholar
  4. 4.
    J. Letessier, J. Rafelski, Hadron production and phase changes in relativistic heavy ion collisions, nucl-th/0504028Google Scholar
  5. 5.
    P. Braun-Munzinger, K. Redlich, J. Stachel, Particle production in heavy ion collisions, nucl-th/0304013, and references thereinGoogle Scholar
  6. 6.
    G. Torrieri, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, SHARE: Statistical hadronization with resonances, nucl-th/0404083; Comp. Phys. Com. 167, 229 (2005), see www.physics.arizona.edutorrieriSHAREshare.htmlADSGoogle Scholar
  7. 7.
    S. Wheaton, J. Cleymans, THERMUS: A thermal model package for ROOT, hep-ph/0407174; J. Phys. G 31, S1069 (2005).Google Scholar
  8. 8.
    P. Petreczky, F. Karsch, E. Laermann, S. Stickan, I. Wetzorke, Nucl. Phys. Proc. Suppl. 106, 513 (2002); F. Karsch, E. Laermann, Thermodynamics and in-medium hadron properties from lattice QCD, hep-lat/0305025, in: Quark gluon plasma III, edited by R.C. Hwa, et al. , pp. 1-59 (Singapore, 2004)CrossRefADSGoogle Scholar
  9. 9.
    V. Uvarov, Phys. Lett. B 511, 136 (2001) [hep-ph/0105185]ADSGoogle Scholar
  10. 10.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 571, 36 (2003) [nucl-th/0303036]ADSGoogle Scholar
  11. 11.
    C. Greiner, P. Koch, H. Stocker, Phys. Rev. Lett. 58, 1825 (1987); J. Rafelski, Phys. Lett. B 190, 167 (1987)CrossRefADSGoogle Scholar
  12. 12.
    J. Letessier, A. Tounsi, U.W. Heinz, J. Sollfrank, J. Rafelski, Phys. Rev. D 51, 3408 (1995) [hep-ph/9212210]CrossRefADSGoogle Scholar
  13. 13.
    J. Letessier, A. Tounsi, U.W. Heinz, J. Sollfrank, J. Rafelski, Phys. Rev. Lett. 70, 3530 (1993)CrossRefADSGoogle Scholar
  14. 14.
    J. Rafelski, J. Letessier, G. Torrieri, Phys. Rev. C 72, 024905 (2005) [nucl-th/0412072]CrossRefADSGoogle Scholar
  15. 15.
    R.L. Thews, J. Phys. G 31, S641 (2005) [hep-ph/0412323]Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Paris 7Cedex 05France

Personalised recommendations