Gluon polarization tensor in color magnetic background

  • M. BordagEmail author
  • V. Skalozub
Theoretical Physics


In SU(2) gluodynamics we calculate the gluon polarization tensor in an Abelian homogeneous magnetic field in one-loop order in the Lorentz background field gauge. It turned out to be non-transversal and consisting of ten tensor structures and corresponding form factors - four in color neutral and six in color charged sector. Seven tensor structures are transversal, three are not. The non-transversal parts are obtained by explicit calculation. We represent the form factors in terms of double parametric integrals which can be computed numerically. Some examples are provided and possible applications are discussed.


Color Magnetic Field Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.O. Agasian, Phys. Lett. B 562, 257 (2003)ADSzbMATHGoogle Scholar
  2. 2.
    V.V. Skalozub, A.V. Strelchenko, Eur. Phys. J. C 33, 105 (2004)CrossRefADSGoogle Scholar
  3. 3.
    V.V. Skalozub, A.V. Strelchenko, Eur. Phys. J. C 40, 121 (2005)CrossRefADSGoogle Scholar
  4. 4.
    M.D. Pollock, Int. J. Mod. Phys. D 12, 1289 (2003)ADSGoogle Scholar
  5. 5.
    O.K. Kalashnikov, Fortschr. Phys. 32, 525 (1984)Google Scholar
  6. 6.
    K. Enqvist, P. Olesen, Phys. Lett. B 329, 195 (1994)ADSGoogle Scholar
  7. 7.
    A.O. Starinets, A.S. Vshivtsev, V.C. Zhukovsky, Phys. Lett. B 322, 403 (1994)ADSGoogle Scholar
  8. 8.
    P. Elmfors, D. Persson, Nucl. Phys. B 538, 309 (1999)CrossRefADSGoogle Scholar
  9. 9.
    V.V. Skalozub, A.V. Strelchenko, Phys. Atom. Nucl. 63, 1956 (2000)CrossRefADSGoogle Scholar
  10. 10.
    N.K. Nielsen, P. Olesen, Nucl. Phys. B 144, 376 (1978)CrossRefADSGoogle Scholar
  11. 11.
    A.V. Borisov, V.C. Zhukovsky, M.Y. Knizhnikov, Yad. Fiz. 39, 1504 (1984)Google Scholar
  12. 12.
    H.J. Kaiser, E. Wieczorek, K. Scharnhorst, Phys. Appl. 14, 239 (1987)Google Scholar
  13. 13.
    J.S. Schwinger, Phys. Rev. D 7, 1696 (1973)ADSGoogle Scholar
  14. 14.
    A. Slavanov, L. Faddeev, Gauge fields, Introduction to quantum theory\/ (Benjamin/Cummings, Advanced Book Program, 1980)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.University of LeipzigInstitute for Theoretical PhysicsLeipzigGermany
  2. 2.Dnepropetrovsk National UniversityDnepropetrovskUkraine

Personalised recommendations