Advertisement

Consistent construction of perturbation theoryon non-commutative spaces

  • S. DenkEmail author
  • V. Putz
  • M. Wohlgenannt
Theoretical Physics

Abstract.

We examine the effect of non-local deformations on the applicability of interaction point time ordered perturbation theory (IPTOPT) based on the free Hamiltonian of local theories. The usual argument for the case of quantum field theory on a non-commutative space (based on the fact that the introduction of star products in bilinear terms does not alter the action) is not applicable to IPTOPT due to several discrepancies compared to the naive path integral approach when non-commutativity involves time. These discrepancies are explained in detail. Besides scalar models, gauge fields are also studied. For both cases, we discuss the free Hamiltonian with respect to non-local deformations.

Keywords

Elementary Particle Quantum Field Theory Perturbation Theory Integral Approach Scalar Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995) [hep-th/0303037]CrossRefzbMATHMathSciNetADSGoogle Scholar
  2. 2.
    J. Gomis, T. Mehen, Nucl. Phys. B 591, 265 (2000) [hep-th/0005129]CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    T. Filk, Phys. Lett. B 376, 53 (1996)ADSMathSciNetGoogle Scholar
  4. 4.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Phys. Lett. B 533, 178 (2002) [hep-th/0201222]ADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    C.-N. Yang, D. Feldman, Phys. Rev. 79, 972 (1950)ADSzbMATHGoogle Scholar
  6. 6.
    Y. Liao, K. Sibold, Eur. Phys. J. C 25, 469 (2002) [hep-th/0205269]ADSzbMATHGoogle Scholar
  7. 7.
    Y. Liao, K. Sibold, Eur. Phys. J. C 25, 479 (2002) [hep-th/0206011]ADSzbMATHGoogle Scholar
  8. 8.
    S. Denk, M. Schweda, JHEP 09, 032 (2003) [hep-th/0306101]ADSMathSciNetGoogle Scholar
  9. 9.
    H. Bozkaya, P. Fischer, H. Grosse, M. Pitschmann, V. Putz, M. Schweda, R. Wulkenhaar, Eur. Phys. J. C 29, 133 (2003) [hep-th/0209253]ADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    P. Fischer, V. Putz, Eur. Phys. J. C 32, 269 (2004) [hep-th/0306099]CrossRefADSGoogle Scholar
  11. 11.
    J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000) [hep-th/0001203]CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    B. Jurco, L. Moller, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 21, 383 (2001) [hep-th/0104153]ADSzbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    A.A. Bichl, J.M. Grimstrup, L. Popp, M. Schweda, R. Wulkenhaar, Int. J. Mod. Phys. A 17, 2219 (2002) [hep-th/0102044]ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    R. Wulkenhaar, JHEP 03, 024 (2002) [hep-th/0112248]ADSMathSciNetGoogle Scholar
  15. 15.
    J.M. Grimstrup, R. Wulkenhaar, Eur. Phys. J. C 26, 139 (2002) [hep-th/0205153]CrossRefADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Commun. Math. Phys. 237, 221 (2003) [hep-th/0301100]ADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    S. Denk, V. Putz, M. Schweda, M. Wohlgenannt, Towards UV finite quantum field theories from non-local field operators, Eur. Phys. J. C 35, 283 (2004) [hep-th/0401237]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    A. Smailagic, E. Spallucci, J. Phys. A 36, L517 (2003) [hep-th/0308193]Google Scholar
  19. 19.
    S. Weinberg, The quantum theory of fields, vol. I (Cambridge University Press, 2000)Google Scholar
  20. 20.
    M. Ostrogradski, Mémoire sur les équations differentielles relatives aux problémes des isoperimétres, Mem. Ac. St. Petersbourg VI 4, 385 (1850)Google Scholar
  21. 21.
    P.A.M. Dirac, Lectures on quantum mechanics (Yeshiva University, New York 1964)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität WienWienAustria
  2. 2.Institut für Theoretische PhysikUniversität WienWienAustria

Personalised recommendations