Advertisement

CP-violation in B → π+π- and the unitarity triangle

  • G. BuchallaEmail author
  • A. S. Safir
Theoretical Physics

Abstract.

We analyze the extraction of weak phases from CP-violation in B → π+π- decays. We propose to determine the unitarity triangle \((\bar{\rho},\bar{\eta})\) by combining the information on mixing-induced CP-violation in B → π+π-, S, with the precision observable sin2β obtained from the CP-asymmetry in B → ψK S . It is then possible to write down exact analytical expressions for \(\bar{\rho}\) and \(\bar{\eta}\) as simple functions of the observables S and sin2β and of the penguin parameters r and ϕ. As an application clean lower bounds on \(\bar{\eta}\) and \(1-\bar{\rho}\) can be derived as functions of S and sin2β, essentially without hadronic uncertainty. Computing r and ϕ within QCD factorization yields precise determinations of \(\bar{\rho}\) and \(\bar{\eta}\) since the dependence on r and ϕ is rather weak. It is emphasized that the sensitivity to the phase ϕ enters only at second order and is extremely small for moderate values of this phase, predicted in the heavy-quark limit. Transparent analytical formulas are further given and discussed for the parameter C of direct CP-violation in B → π+π-. Predictions and uncertainties for r and ϕ in QCD factorization are examined in detail. It is pointed out that a simultaneous expansion in 1/m b and 1/N leads to interesting simplifications. At first order infrared divergences are absent, while the most important effects are retained. Independent experimental tests of the factorization framework are briefly discussed.

Keywords

Elementary Particle Lower Bound Quantum Field Theory Experimental Test Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gronau, D. London, Phys. Rev. Lett. 65, 3381 (1990)CrossRefADSGoogle Scholar
  2. 2.
    M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999)CrossRefADSGoogle Scholar
  3. 3.
    M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000)CrossRefADSGoogle Scholar
  4. 4.
    M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 606, 245 (2001)CrossRefADSGoogle Scholar
  5. 5.
    J.P. Silva, L. Wolfenstein, Phys. Rev. D 49, 1151 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Y. Grossman, Y. Nir, M.P. Worah, Phys. Lett. B 407, 307 (1997)ADSGoogle Scholar
  7. 7.
    Y. Grossman, H.R. Quinn, Phys. Rev. D 58, 017504 (1998)ADSGoogle Scholar
  8. 8.
    J. Charles, Phys. Rev. D 59, 054007 (1999)CrossRefADSGoogle Scholar
  9. 9.
    R. Fleischer, Eur. Phys. J. C 16, 87 (2000)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M. Gronau, J.L. Rosner, Phys. Rev. D 65, 013004 (2002) [Erratum D 65, 079901 (2002)]; Phys. Rev. D 65, 093012 (2002)ADSGoogle Scholar
  11. 11.
    M. Gronau, J.L. Rosner, Phys. Rev. D 66, 053003 (2002) [Erratum D 66, 119901 (2002)]ADSGoogle Scholar
  12. 12.
    C.D. Lu, Z. j. Xiao, Phys. Rev. D 66, 074011 (2002); Z. j. Xiao, C.D. Lu, L. Guo, hep-ph/0303070; T. Yoshikawa, Phys. Rev. D 68, 017501 (2003)CrossRefADSGoogle Scholar
  13. 13.
    A. Höcker, H. Lacker, M. Pivk, L. Roos, LAL preprint, LAL 02-103, LPNHE 2002-15, http:/ckmfitter.in2p3.fr; eConf C0304052 (2003) WG418, hep-ph/0307013Google Scholar
  14. 14.
    A.J. Buras, R. Fleischer, S. Recksiegel, F. Schwab, Phys. Rev. Lett. 92, 101804 (2004); ucl. Phys. B 697, 133 (2004)CrossRefADSGoogle Scholar
  15. 15.
    A. Ali, E. Lunghi, A.Y. Parkhomenko, Eur. Phys. J. C 36, 183 (2004)CrossRefADSGoogle Scholar
  16. 16.
    G. Buchalla, A.S. Safir, Phys. Rev. Lett. 93, 021801 (2004)CrossRefADSGoogle Scholar
  17. 17.
    F.J. Botella, J.P. Silva, Phys. Rev. D 70, 096007 (2004)CrossRefADSGoogle Scholar
  18. 18.
    L. Lavoura, Eur. Phys. J. C 40, 187 (2005)CrossRefADSGoogle Scholar
  19. 19.
    L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983)CrossRefADSGoogle Scholar
  20. 20.
    A.J. Buras, M.E. Lautenbacher, G. Ostermaier, Phys. Rev. D 50, 3433 (1994)CrossRefADSGoogle Scholar
  21. 21.
    B. Aubert et al. [BaBar Collaboration], hep-ex/0501071.Google Scholar
  22. 22.
    K. Abe et al. [Belle Collaboration], hep-ex/0502035.Google Scholar
  23. 23.
    A.J. Buras, M. Jamin, M.E. Lautenbacher, P.H. Weisz, Nucl. Phys. B 370, 69 (1992) [Addendum B 375, 501 (1992)]CrossRefADSGoogle Scholar
  24. 24.
    A.J. Buras, J.M. Gérard, Nucl. Phys. B 264, 371 (1986)CrossRefADSGoogle Scholar
  25. 25.
    A.J. Buras, J.M. Gérard, R. Rückl, Nucl. Phys. B 268, 16 (1986)CrossRefADSGoogle Scholar
  26. 26.
    W.A. Bardeen, A.J. Buras, J.M. Gérard, Nucl. Phys. B 293, 787 (1987)CrossRefADSGoogle Scholar
  27. 27.
    Heavy Flavor Averaging Group, http:/www.slac.stanford.eduxorghfagindex.htmlGoogle Scholar
  28. 28.
    CKMFitter Working Group, LP2003 update, September 2003, http:/ckmfitter.in2p3.frGoogle Scholar
  29. 29.
    G. Buchalla, A.J. Buras, Phys. Rev. D 54, 6782 (1996)CrossRefADSGoogle Scholar
  30. 30.
    A.S. Safir, JHEP 0409, 053 (2004)ADSGoogle Scholar
  31. 31.
    I. Dunietz, FERMILAB-CONF-93-090-T, presented at Summer Workshop on B Physics at Hadron Accelerators, Snowmass, CO, 21 June-2 July 1993; R. Fleischer, Phys. Lett. B 459, 306 (1999)Google Scholar
  32. 32.
    M. Beneke, eConf C0304052 (2003) FO001, hep-ph/0308040Google Scholar
  33. 33.
    M. Neubert, B. Stech, Adv. Ser. Direct. High Energy Phys. 15, 294 (1998)Google Scholar
  34. 34.
    Z. Luo, J.L. Rosner, Phys. Rev. D 68, 074010 (2003)CrossRefADSGoogle Scholar
  35. 35.
    M. Beneke, M. Neubert, Nucl. Phys. B 675, 333 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical Physics, Department für PhysikLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations