Advertisement

Inflaton field governed universe from NKK theory of gravity: stochastic approach

  • M. AnabitarteEmail author
  • J. E. M. Aguilar
  • M. Bellini
Theoretical Physics

Abstract.

We study a non-perturbative single field (inflaton) governed cosmological model from a 5D non-compact Kaluza-Klein (NKK) theory of gravity. The inflaton field fluctuations are estimated for different epochs of the evolution of the universe. We conclude that the inflaton field has been sliding down its (quadratic) potential hill along the whole evolution of the universe and a mass is involved of the order of the Hubble parameter. In the model here developed the only free parameter is the Hubble parameter, which could be reconstructed in the future from Super Nova Acceleration Probe (SNAP) data.

Keywords

Field Theory Elementary Particle Quantum Field Theory Free Parameter Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Forgacs, Z. Horvath, Gen. Rel. Grav. 11, 205 (1979); A. Chodos, S. Detweiler, Phys. Rev. D 21, 2167 (1980); P.G.O. Freund, Nucl. Phys. B 209, 146 (1982); T. Appelquist, A. Chodos, Phys. Rev. Lett. 50, 141 (1983); E. Alvarez, M.B. Gavela, Phys. Rev. Lett. 51, 931 (1983); S. Randjbar-Daemi, A. Salam, J. Strathdee, Phys. Lett. B 135, 388 (1984)ADSMathSciNetGoogle Scholar
  2. 2.
    W.J. Marciano, Phys. Rev. Lett. 52, 489 (1984)CrossRefADSGoogle Scholar
  3. 3.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690, 3370 (1999)ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)ADSMathSciNetGoogle Scholar
  5. 5.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Rev. D 59, 086004 (1999)CrossRefADSGoogle Scholar
  6. 6.
    J.M. Overduin, P.S. Wesson, Phys. Rep. 283, 303 (1997), and references thereinCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    J.W. van Holten, Phys. Rev. Lett. 89, 201301 (2002); Mod. Phys. Lett. A 17, 1383 (2002)ADSMathSciNetGoogle Scholar
  8. 8.
    J.E. Madriz Aguilar, M. Bellini, Eur. Phys. J. C 38, 367 (2004)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    J.E. Madriz Aguilar, M. Bellini, Eur. Phys. J. C 38, 123 (2004); Phys. Lett. B 596, 116 (2004); Eur. Phys. J. C 38, 367 (2004); Eur. Phys. J. C 42, 349 (2005)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. Raya Montaño, J.E. Madriz Aguilar, M. Bellini, e-print: gr-qc/0502027Google Scholar
  11. 11.
    H. Liu, Phys. Lett. B 560, 149 (2003)ADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    A.G. Riess et al. , Astron. J. 116, 1009 (1998)Google Scholar
  13. 13.
    S.J. Perlmutter et al. , Astroph. J. 517, 565 (1999)ADSGoogle Scholar
  14. 14.
    R.A. Knop et al. , Astroph. J. 598, 102(K) (2003)Google Scholar
  15. 15.
    A.G. Riess et al. , Astroph. J. 607, 665(R) (2004)ADSGoogle Scholar
  16. 16.
    Review of Particle Physics, Phys. Rev. D 66, 010001-170 (2002)Google Scholar
  17. 17.
    R.P. Kirshner, Science 300, 1914 (2003)CrossRefADSGoogle Scholar
  18. 18.
    A. Guth, D. Kaiser, Science 307, 884 (2005)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    A. Shafieloo, U. Alam, V. Sahni, A. Starobinsky, e-print: astro-ph/0505329Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  • M. Anabitarte
    • 1
    • 3
    Email author
  • J. E. M. Aguilar
    • 2
  • M. Bellini
    • 1
    • 3
  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataFunesArgentina
  2. 2.Instituto de Física y Matemáticas, AP: 2-82(58040) Universidad Michoacana de San Nicolás de HidalgoMorelia, MichoacánMéxico
  3. 3.Consejo Nacional de Ciencia y Tecnología (CONICET)Argentina

Personalised recommendations