Advertisement

Seesaw induced electroweak scale, the hierarchy problemand sub-eV neutrino masses

  • D. AtwoodEmail author
  • S. Bar-Shalom
  • A. Soni
Theoretical Physics

Abstract.

We describe a model for the scalar sector where all interactions occur either at an ultra-high scale, ΛU~1016-1019 GeV, or at an intermediate scale, ΛI = 109-1011 GeV. The interaction of physics on these two scales results in an SU(2) Higgs condensate at the electroweak (EW) scale, ΛEW, through a seesaw-like Higgs mechanism, \(\Lambda_{\mathrm{{EW}}} \sim \Lambda_{\mathrm{I}}^2/\Lambda_{\mathrm{U}}\), while the breaking of the SM SU(2) x U(1) gauge symmetry occurs at the intermediate scale ΛI . The EW scale is, therefore, not fundamental but is naturally generated in terms of ultra-high energy phenomena and so the hierarchy problem is alleviated. We show that the class of such "seesaw Higgs" models predict the existence of sub-eV neutrino masses which are generated through a "two-step" seesaw mechanism in terms of the same two ultra-high scales: \(m_\nu \sim \Lambda_{\mathrm{I}}^4/\Lambda_{\mathrm{U}}^3 \sim \Lambda_{\mathrm{{EW}}}^2/\Lambda_{\mathrm{U}} \). The neutrinos can be either Dirac or Majorana, depending on the structure of the scalar potential. We also show that our seesaw Higgs model can be naturally embedded in theories with tiny extra dimensions of size \(R \sim \Lambda_{\mathrm{U}}^{-1} \sim 10^{-16}\) fm, where the seesaw induced EW scale arises from a violation of a symmetry at a distant brane; in particular, in the scenario presented there are seven tiny extra dimensions.

Keywords

Field Theory Elementary Particle Quantum Field Theory Gauge Symmetry Neutrino Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gell-Mann, P. Ramond, R. Slansky, Supergravity, edited by P. Van Nieuwenhuizen, D.Z. Freedman (North Holland, Amsterdam 1979) p. 315; S.L. Glashow, Quarks and Leptons, Cargese, 1979, edited by M. Levy et al. (Plenum, New York 1980); T. Yanagida, Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe, edited by O. Sawada, A. Sugamoto (KEK report 79-18, Tsukuba, Japan, 1979), p. 95; R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)Google Scholar
  2. 2.
    For reviews see e.g., H.P. Nilles, Phys. Rep. 110, 1 (1984); H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985); S.P. Martin, Perspectives on Supersymmetry, edited by G.L. Kane (World Scientific, 1998) p. 1CrossRefADSGoogle Scholar
  3. 3.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Rev. Lett. 86, 4757 (2001); Phys. Lett. B 513, 232 (2001); N. Arkani-Hamed, A.G. Cohen, T. Gregoire, J.G. Wacker, JHEP 08, 020 (2002); N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, JHEP 0207, 034 (2002)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    W.A. Bardeen, preprint number: FERMILAB-CONF-95-391-T, talk given at the 1995 Ontake Summer Institute (Ontake Mountain, Japan, 1995)Google Scholar
  5. 5.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 431, 329 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 436, 257 (1998); N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 086004 (1999)ADSMathSciNetGoogle Scholar
  6. 6.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)ADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    R.N. Mohapatra, M.K. Parida, Phys. Rev. D 47, 264 (1993)CrossRefADSGoogle Scholar
  8. 8.
    X. Calmet, Eur. Phys. J. C 28, 451 (2003)CrossRefADSGoogle Scholar
  9. 9.
    For a recent review see e.g., R.D. Mckeown, P. Vogel, hep-ph/0402025Google Scholar
  10. 10.
    B.A. Dobrescu, C.T. Hill, Phys. Rev. Lett. 81, 2634 (1998); R.S. Chivukula, B.A. Dobrescu, H. Georgi, C.T. Hill, Phys. Rev. D 59, 075003 (1999)CrossRefADSGoogle Scholar
  11. 11.
    M. Ito, Prog. Theor. Phys. 106, 577 (2001)CrossRefADSGoogle Scholar
  12. 12.
    See e.g., R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, Nucl. Phys. B 575, 61 (2000); E.A. Paschos, talk given at the 1st Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt01) (Tsukuba, Japan, 13-16 December 2001), Nucl. Phys. Proc. Suppl. 112, 36 (2002), hep-ph/0204137; W. Buchmuller, lectures given at the European School of High-Energy Physics (ESHEP 2001) (Beatenberg, Switzerland, 26 August-8 September 2001), Beatenberg 2001, High-energy physics, p. 36, hep-ph/0204288; W. Buchmuller, P. Di Bari, M. Plumacher, Nucl. Phys. B 643, 367 (2002); B 665, 445 (2003); G.F. Guidice, A. Notari, M. Raidal, A. Riotto, A. Strumia, hep-ph/0310123; N. Cosme, hep-ph/0403209CrossRefADSGoogle Scholar
  13. 13.
    Y. Chikashige, R.N. Mohapatra, R.D. Peccei, Phys. Lett. B 98, 265 (1981)ADSGoogle Scholar
  14. 14.
    N. Arkani-Hamed, L. Hall, D. Smith, N. Weiner, Phys. Rev. D 61, 116003 (2000); N. Arkani-Hamed, S. Dimopoulos, Phys. Rev. D 65, 052003 (2002)ADSMathSciNetGoogle Scholar
  15. 15.
    E. Ma, M. Raidal, U. Sarkar, Phys. Rev. Lett. 85, 3769 (2000)ADSGoogle Scholar
  16. 16.
    E. Ma, G. Rajasekaran, U. Sarkar, Phys. Lett. B 495, 363 (2000)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA
  2. 2.Physics Department}Technion-Institute of TechnologyHaifaIsrael
  3. 3.High Energy Theory GroupBrookhaven National LaboratoryUptonUSA

Personalised recommendations