Advertisement

An alternative approach to canonical quantizationof the radiation damping

  • A. C. R. MendesEmail author
  • F. I. Takakura
  • C. Neves
  • W. Oliveira
Theoretical Physics

Abstract.

Inspired by some works on quantization of dissipative systems, in particular the ones treating the damped harmonic oscillator and by a paper due to Lukierski, we consider the dissipative system of a charge interacting with its own radiation, which is the origin of radiation damping. Using the indirect Lagrangian representation we obtained a Lagrangian formalism with a Chern-Simons-like term. A Hamiltonian analysis is also done in commutative and non-commutative scenarios, which leads to the quantization of the system.

Keywords

Radiation Field Theory Elementary Particle Quantum Field Theory Harmonic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blasone, P. Jizba, G. Vitiello, Phys. Lett. A 287, 205 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. Banerjee, P. Mukherjee, quant-ph/0205143; quant-ph/0108055Google Scholar
  3. 3.
    E. Celechini, M. Rasetti, G. Vitiello, Ann. Phys. 215, 156 (1992)Google Scholar
  4. 4.
    A.C.R. Mendes, F.I. Takakura, Phys. Rev. E 64, 056501 (2001)CrossRefADSGoogle Scholar
  5. 5.
    H. Feshbach, Y. Tikochinsky, Trans. N.Y. Acad. Sci., Ser. II 38, 44 (1977)Google Scholar
  6. 6.
    W. Heitler, The quantum theory of radiation (Dover, 1970), 3nd ed.; J.D. Jackson, Classical electrodynamics (Wiley, New York 1975), 2nd ed., Chaps. 14 and 17; Gilbert N. Plass, Rev. Mod. Phys. 33, 37 (1961)Google Scholar
  7. 7.
    R.P. Walker, Radiation Damping, Proceedings, General Accelerator Physics, CERN Geneva, CERN 91-04, 116-135 (1990)Google Scholar
  8. 8.
    F.V. Hartemann, A.K. Kerman, Phys. Rev. Lett. 76, 624 (1996)CrossRefADSGoogle Scholar
  9. 9.
    C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, W. Ragg, D.L. Burke, R.C. Field, G. Horton-Smith, A.C. Odian, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Phys. Rev. Lett. 76, 3116 (1996)CrossRefADSGoogle Scholar
  10. 10.
    A.C.R. Mendes, P.M.V.B. Barone, Monograph: Abordagens Fenomenológicas e Microscópicas da Teoria do Amortecimento Radiativo, UFJF (1995)Google Scholar
  11. 11.
    M. Blasone, E. Graziano, O.K. Pashaev, G. Vitiello, Ann. Phys. 252, 115 (1996)ADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Ann. Phys. 260, 224 (1997)ADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    M.S. Plyushchay, Nucl. Phys. B 362, 54 (1991); Phys. Lett. B 262, 71 (1991)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Y. Brihaye, C. Gonera, S. Giller, P. Kosiński, hep-th/9503046Google Scholar
  15. 15.
    L. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988); J. Barcelos Neto, C. Wotzasek, Mod. Phys. Lett. A 7, 1737 (1992); Int. J. Mod. Phys. A 7, 4981 (1992)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    R. Jackiw, in Constraints Theory and Quantization Methods, edited by F. Colomo et al. (World Scientific, Singapore 1994), p. 163Google Scholar
  17. 17.
    A. Kempf, J. Math. Phys. 35, 4483 (1994)ADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  • A. C. R. Mendes
    • 1
    Email author
  • F. I. Takakura
    • 1
  • C. Neves
    • 1
  • W. Oliveira
    • 1
  1. 1.Departamento de FísicaUniversidade Federal de Juiz de ForaJuiz de Fora, MGBrasil

Personalised recommendations