Advertisement

The European Physical Journal C

, Volume 44, Issue 4, pp 607–612 | Cite as

Combinatorial identities and quantum state densitiesof supersymmetric sigma models on N-folds

  • M. C. B. AbdallaEmail author
  • A. A. Bytsenko
  • M. E. X. Guimarães
Theoretical Physics
  • 28 Downloads

Abstract.

There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy.

Keywords

Black Hole Sigma Model Elliptic Genus Logarithmic Correction Twisted Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics (Consultans Bureau, New York 1986)Google Scholar
  2. 2.
    V.G. Kac, Infinite dimensional Lie algebras, 3rd Edition (Cambridge University Press, Cambridge 1990)Google Scholar
  3. 3.
    J. Maldacena, A. Strominger, E. Witten, JHEP 9712, 002 (1997) [hep-th/9711053]ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Gaiotto, A. Strominger, X. Yin, Superconformal Black Hole Quantum Mechanics, hep-th/0412322Google Scholar
  5. 5.
    L. Dixon, J. Harvey, C. Vafa, E. Witten, Nucl. Phys. B 274, 285 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    R. Dijkgraaf, G. Moore, E. Verlinde, H. Verlinde, Commun. Math. Phys. 185, 197 (1997) [hep-th/9608096]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Elliptic curves and modular forms in algebraic topology, edited by P.S. Landweber (Springer-Verlag 1988)Google Scholar
  8. 8.
    T. Kawai, Y. Yamada, S.-K. Yang, Nucl. Phys. B 414, 191 (1994) [hep-th/9396996]ADSCrossRefGoogle Scholar
  9. 9.
    R. Dijkgraaf, E. Verlinde, H. Verlinde, Nucl. Phys. 484, 543 (1997) [hep-th/9607026]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Hirzebruch, Topological methods in algebraic geometry, 3rd Edition (Springer-Verlag 1978)Google Scholar
  11. 11.
    H. Garland, J. Lepowsky, Inv. Math. 34, 37 (1976)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    I.G. Macdonald, Inv. Math. 15, 91 (1972)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B.L. Feigin, Usp. Math. Nauk 35, 225 (1980)MathSciNetGoogle Scholar
  14. 14.
    J. Lepowsky, Ann. Sci. Ec. Norm. Sup. 12, 169 (1979)MathSciNetGoogle Scholar
  15. 15.
    D.B. Fuks, Kvant 8, 12 (1981)Google Scholar
  16. 16.
    A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic aspects of quantum fields (World Scientific, Singapore 2003)Google Scholar
  17. 17.
    A.A. Bytsenko, K. Kirsten, S. Zerbini, Phys. Lett. B 304, 235 (1993)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta regularization techniques with applications (World Scientific, Singapore 1994)Google Scholar
  19. 19.
    A.A. Bytsenko, G. Cognola, L. Vanzo, S. Zerbini, Phys. Rep. 266, 1 (1996) [hep-th/9505061]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Hirzebruch, T. Höfer, Math. Ann. 286, 255 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.E. Borcherds, Inv. Math. 120, 161 (1995)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    V.A. Gritsenko, V.V. Nikulin, Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras, alg-geom/9504006Google Scholar
  23. 23.
    S.K. Rama, Phys. Lett. B 566, 152 (2003) [hep-th/0304152]ADSCrossRefGoogle Scholar
  24. 24.
    A. Strominger, C. Vafa, Phys. Lett. B 379, 99 (1996) [hep-th/9601029]ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.C.B. Abdalla, A.A. Bytsenko, M.E.X. Guimarães, Phys. Rev. D 68, 104011 (2003) [hep-th/0308090]ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.M. Maldacena, L. Susskind, Nucl. Phys. 475, 679 (1996) [hep-th/9604042]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E. Halyo, A. Rajaraman, L. Susskind, Phys. Lett. B 392, 319 (1997) [hep-th/9605112]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • M. C. B. Abdalla
    • 1
    Email author
  • A. A. Bytsenko
    • 2
  • M. E. X. Guimarães
    • 3
  1. 1.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil
  2. 2.Departamento de FísicaUniversidade Estadual de LondrinaLondrina-ParanáBrazil
  3. 3.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations