The European Physical Journal C

, Volume 44, Issue 4, pp 599–605 | Cite as

Dilaton field induces a commutative Dp-brane coordinate

  • B. SazdovićEmail author
Theoretical Physics


It is well known that the space-time coordinates \(x^\mu\) and the corresponding Dp-brane world-volume become non-commutative when the ends of the open string are attached to a Dp-brane with the Neveu-Schwarz background field \(B_{\mu \nu}\). In this paper, we extend these considerations by including an additional dilaton field \(\Phi\), linear in \(x^\mu\). In that case, the conformal part of the world-sheet metric becomes a new non-commutative variable, while the coordinate in the direction orthogonal to the hyper plane \(\Phi = {\mathrm {const}}\) becomes commutative.


Open String Closed String Dilaton Field Linear Dilaton Arbitrary Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Connes, M.R. Douglas, A. Schwarz, JHEP 02, 003 (1998); M.R. Douglas, C. Hull, JHEP 02, 008 (1998)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    V. Schomerus, JHEP 06, 030 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, JHEP 02, 016 (1999); C.S. Chu, P.M. Ho, Nucl. Phys. B 550, 151 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Seiberg, E. Witten, JHEP 09, 032 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, Nucl. Phys. B 576, 578 (2000); C.S. Chu, P.M. Ho, Nucl. Phys. B 568, 447 (2000); T. Lee, Phys. Rev. D 62, 024022 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Li, Phys. Rev. D 54, 1644 (1996); A. Rajaraman, M. Rozali, JHEP 12, 005 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Bhattacharyya, A. Kumar, S. Mahapatra, Mod. Phys. Lett. A 16, 2263 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 158, 316 (1985); Nucl. Phys. B 261, 1 (1985)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C.G. Callan, D. Friedan, E.J. Martinec, M.J. Perry, Nucl. Phys. B 262, 593 (1985); T. Banks, D. Nemeschansky, A. Sen, Nucl. Phys. B 277, 67 (1986)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R.G. Leigh, Mod. Phys. Lett. A 4, 2767 (1989)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring theory (Cambridge University Press, 1987)Google Scholar
  12. 12.
    J. Polchinski, String theory (Cambridge University Press, 1998)Google Scholar
  13. 13.
    B. Sazdović, Int. J. Mod. Phys. A 20 (2005), hep-th/0304085; Torsion and nonmetricity in the stringy geometry, hep-th/0304086Google Scholar
  14. 14.
    B. Sazdović, Phys. Lett. B 352, 64 (1995)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Institute of PhysicsBelgradeSerbia

Personalised recommendations