Advertisement

The European Physical Journal C

, Volume 44, Issue 4, pp 591–598 | Cite as

On superfield covariant quantization in general coordinates

  • D. M. GitmanEmail author
  • P. Yu. Moshin
  • J. L. Tomazelli
Theoretical Physics
  • 36 Downloads

Abstract.

We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables.

Keywords

Scalar Density Subsidiary Condition Coordinate Dependence Covariant Quantization BRST Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.A. Batalin, P.M. Lavrov, I.V. Tyutin, J. Math. Phys. 31, 1487 (1990); 32, 532 (1990); 32, 2513 (1990); P.M. Lavrov, Mod. Phys. Lett. A 6, 2051 (1991); Theor. Math. Phys. 89, 1187 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    I.A. Batalin, R. Marnelius, Phys. Lett. B 350, 44 (1995); Nucl. Phys. B 465, 521 (1996); I.A. Batalin, R. Marnelius, A.M. Semikhatov, Nucl. Phys. B 446, 249 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Geyer, D.M. Gitman, P.M. Lavrov, Mod. Phys. Lett. A 14, 661 (1999); Theor. Math. Phys. 123, 813 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    B. Geyer, P. Lavrov, A. Nersessian, Phys. Lett. B 512, 211 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Geyer, P. Lavrov, A. Nersessian, Int. J. Mod. Phys. A 17, 1183 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Geyer, P. Lavrov, Int. J. Mod. Phys. A 19, 1639 (2004)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    B.V. Fedosov, J. Diff. Geom. 40, 213 (1994); Deformation quantization and index theory (Akademie Verlag, Berlin 1996)MathSciNetGoogle Scholar
  8. 8.
    B. Geyer, P. Lavrov, Int. J. Mod. Phys. A 19, 3195 (2004); A 20, 2179 (2005); Basic properties of Fedosov supermanifolds,hep-th/0406236; P.M. Lavrov, O.V. Radchenko, Higher order relations in Fedosov supermanifolds, hep-th/0503221Google Scholar
  9. 9.
    P.M. Lavrov, Phys. Lett. B 366, 160 (1996); Theor. Math. Phys. 107, 602 (1996); P.M. Lavrov, P.Yu. Moshin, Phys. Lett. B 508, 127 (2001); Theor. Math. Phys. 129, 1645 (2001)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Geyer, D.M. Gitman, P.M. Lavrov, P.Yu. Moshin, Int. J. Mod. Phys. A 19, 737 (2004)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Geyer, P. Lavrov, A. Nersessian, A note on the supersymplectic structure of triplectic formalism, hep-th/0406201Google Scholar
  12. 12.
    B. DeWitt, Supermanifolds, 2nd ed. (Cambridge University Press, Cambridge, 1992)Google Scholar
  13. 13.
    B.S. DeWitt, Dynamical theory of groups and fields (Gordon and Breach, New York 1965)Google Scholar
  14. 14.
    I. Gelfand, V. Retakh, M. Shubin, Advan. Math. 136, 104 (1998); dg-ga/9707024CrossRefGoogle Scholar
  15. 15.
    I.V. Tyutin, Phys. Atom. Nucl. 65, 194 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • D. M. Gitman
    • 1
    Email author
  • P. Yu. Moshin
    • 1
    • 2
  • J. L. Tomazelli
    • 3
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Tomsk State Pedagogical UniversityTomskRussia
  3. 3.Departamento de Física e QuímicaUNESPBrazil

Personalised recommendations