2PI effective action and gauge dependence identities

  • M. E. CarringtonEmail author
  • G. Kunstatter
  • H. Zaraket
Theoretical Physics


The problem of maintaining gauge invariance when truncating the two-particle irreducible (2PI) effective action has been studied recently by several authors. Here we give a simple and very general derivation of the gauge dependence identities for the off-shell 2PI effective action. We consider the case where the gauge is fixed by an arbitrary function of the quantum gauge field, subject only to the restriction that the Faddeev-Popov matrix is invertible. We also study the background field gauge. We address the role that these identities play in solving gauge invariance problems associated with physical quantities calculated using a truncated on-shell 2PI effective action.


Field Theory Elementary Particle Quantum Field Theory Physical Quantity Arbitrary Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.K. Nielsen, Nucl. Phys. B 101, 173 (1975)Google Scholar
  2. 2.
    R. Kobes, G. Kunstatter, Rebhan, Phys. Rev. Lett. 64, 2992 (1990)PubMedGoogle Scholar
  3. 3.
    R. Kobes, G. Kunstatter, A. Rebhan, Nucl. Phys. B 355, 1 (1991)Google Scholar
  4. 4.
    E. Mottola, Proceedings of SEWM 2002 (World Scientific 2003), hep-ph/0304279Google Scholar
  5. 5.
    A. Arrizabalaga, J. Smit, Phys. Rev. D 66, 065014 (2002)Google Scholar
  6. 6.
    S. Coleman, E. Weinberg, Phys. Rev. D 7, 1888 (1973)Google Scholar
  7. 7.
    L. Dolan, R. Jackiw, Phys. Rev. D 9, 2904 (1974)Google Scholar
  8. 8.
    G. Kunstatter, H.P. Leivo, Phys. Lett. B 166, 321 (1986); Nucl. Phys. B 279, 641 (1987)Google Scholar
  9. 9.
    B.S. DeWitt, Phys. Rev. 162, 1195 (1967); in Quantum Gravity II, edited by C.J. Isham, R. Penrose, D.W. Sciama (Oxford University Press, New York 1981) pp. 449-487Google Scholar
  10. 10.
    J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)Google Scholar
  11. 11.
    R.E. Norton, J.M. Cornwall, Ann. Phys. 91, 106 (1975)Google Scholar
  12. 12.
    Work in progressGoogle Scholar
  13. 13.
    Steven Weinberg, The quantum theory of fields II (Cambridge University Press 1996)Google Scholar
  14. 14.
    B. Zumino, J. Math. Phys. 1, 1 (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Department of PhysicsBrandon UniversityManitobaCanada
  2. 2.Department of PhysicsUniversity of WinnipegWinnipegCanada

Personalised recommendations