Advertisement

Green’s function for spinless particle via Parisi-Wu stochastic quantization method

  • Z. Lehtihet
  • L. ChetouaniEmail author
Theoretical Physics

Abstract.

An exact and analytic Green function for a spinless particle in interaction with an electromagnetic plane wave field, expressed in the coordinate gauge is given by Parisi-Wu stochastic quantization method. We separate the classical calculations from those related to the quantum fluctuation term. We have used a perturbative treatment relying on phase and configuration spaces formulation.

Keywords

Field Theory Elementary Particle Quantum Field Theory Plane Wave Green Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Parisi, Y.-S. Wu, Sci. Sin. 24, 483 (1981)Google Scholar
  2. 2.
    P.H. Damgaard, H. Hüffel Stochastic quantization (World Scientific Publishing, 1988)Google Scholar
  3. 3.
    M. Namiki, Stochastic quantization (Springer, 1992)Google Scholar
  4. 4.
    H. Hüffel, P.H. Nakazato, Mod. Phys. Lett. A 9, 2953 (1994)Google Scholar
  5. 5.
    K. Yuosa, H. Nakazato, hep-th/9610209 v1Google Scholar
  6. 6.
    A.N. Vaidya, C. Farina De Souza, Nuovo Cimento B 101, 69 (1988)Google Scholar
  7. 7.
    J. Schwinger, Phys. Rev. 82, 664 (1951)Google Scholar
  8. 8.
    A. Vaidya, C. Farina, M. Hott, Nuovo Cimento A 105, 925 (1992)Google Scholar
  9. 9.
    T. Boudjedaa, L. Chetouani, L. Guechi, T.F. Hammann, Nuovo Cimento. B 109, 219 (1994)Google Scholar
  10. 10.
    C. Cronsrtom, Phys. Lett. B 90, 267 (1980)Google Scholar
  11. 11.
    L.S. Schulmann, Techniques and applications of path integration (Wiley, New York 1981)Google Scholar
  12. 12.
    R. Feynman, A. Hibbs, Quantum mechanics and path integrals (McGraw Hill, New York 1965)Google Scholar
  13. 13.
    I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products (Academic Press, New York 1979)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Département de physique, Faculté des SciencesUniversité MentouriConstantineAlgeria

Personalised recommendations