Advertisement

The European Physical Journal C

, Volume 44, Issue 4, pp 567–576 | Cite as

\(J/\psi\) gluonic dissociation revisited: II. Hydrodynamic expansion effects

  • B. K. PatraEmail author
  • V. J. Menon
Theoretical Physics

Abstract.

We explicitly take into account the effect of the hydrodynamic expansion profile on the gluonic break-up of the \(J/\psi\)'s produced in an equilibrating parton plasma. Attention is paid to the space-time inhomogeneities as well as Lorentz frames while deriving new expressions for the gluon number density n g , the average dissociation rate \(\langle \tilde{\Gamma} \rangle\), and the survival probability of \(\psi\), S. A novel type of partial wave interference mechanism is found to operate in the formula of \(\langle \tilde{\Gamma} \rangle\). A non-relativistic longitudinal expansion from the small length of the initial cylinder is found to push the S(pT) graph above the no flow case considered by us earlier [9]. However, the relativistic flow corresponding to the large length of the initial cylinder pushes the curve of S(pT) downwards at LHC but upwards at RHIC. This mutually different effect on S(pT) may be attributed to the different initial temperatures generated at LHC and RHIC.

Keywords

Transverse Momentum Survival Probability Rest Frame Lorentz Transformation Lorentz Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Helmut Satz, Rept. Prog. Phys. 63, 1511 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    B.K. Patra, D.K. Srivastava, Phys. Lett. B 505, 113 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    D. Kharzeev, H. Satz, Phys. Lett. B 334, 155 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    D. Kharzeev, H. Satz, Phys. Lett B 366, 316 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    B.K. Patra, V.J. Menon, Nucl. Phys. A 708, 353 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Xiao-Ming Xu, D. Kharzeev, H. Satz, Xin-Nian Wang, Phys. Rev. C 53, 3051 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    B.K. Patra, V.J. Menon, Eur. Phys. J. C 37, 115 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    T.S. Biro, E. van Doorn, M.H. Thoma, B. Müller, X.-N. Wang, Phys. Rev. C 48, 1275 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    D.K. Srivastava, M.G. Mustafa, B. Müller, Phys. Rev. C 56, 1064 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    D. Pal, B.K. Patra, D.K. Srivastava, Eur. Phys. J. C 17, 179 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Jean-Yves Ollitrault, Phys. Rev. D 46, 229 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    Xin-Nian Wang, Feng Yuan, Phys. Lett. B 540, 62 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    X.-N Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    M.E. Peskin, Nucl. Phys. B 156, 365 (1979); G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Gerschel, J. Hüfner, Phys. Lett. B 207, 253 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations