Advertisement

Quantum chaos in the Yang-Mills-Higgs system at finite temperature

  • D. U. MatrasulovEmail author
  • F. C. Khanna
  • U. R. Salomov
  • A. E. Santana
Theoretical Physics

Abstract.

Quantum chaos in the finite-temperature Yang-Mills-Higgs system is studied. The energy spectrum of a spatially homogeneous SU(2) Yang-Mills-Higgs system is calculated within thermofield dynamics. Level statistics of the spectra is studied by plotting nearest-level spacing distribution histograms. It is found that finite-temperature effects lead to a strengthening of chaotic effects, i.e. a spectrum which has the Poissonian distribution at zero temperature has the Gaussian distribution at finite temperature.

Keywords

Gaussian Distribution Field Theory Elementary Particle Quantum Field Theory Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Brody et al. , Rev. Mod. Phys. 53, 358 (1981)Google Scholar
  2. 2.
    B. Eckhardt, Phys. Rep. 163, 207 (1988)Google Scholar
  3. 3.
    M.C. Gutzwiller, Chaos in classical and quantum systems. (Springer, New York 1990)Google Scholar
  4. 4.
    T. Guhr, A. Mueller-Groeling, H.A. Weidenmueller, Phys. Rep. 299, 189 (1998)Google Scholar
  5. 5.
    L.A. Bunimovich, Commun. Math. Phys. 65, 259 (1979)Google Scholar
  6. 6.
    G.M. Zaslavsky, Stochastic behaviour of dynamical systems (Harwood, New York 1985)Google Scholar
  7. 7.
    Jian-zhong Gu et al. , Phys. Rev. C 60, 035211 (1999)Google Scholar
  8. 8.
    M.A. Halasz, J.J.M. Verbaarschot, Phys. Rev. Lett. 74, 3920 (1995)PubMedGoogle Scholar
  9. 9.
    E. Bittner, H. Markum, R. Pullrich Quantum chaos in physical systems: from superconductors to quarks, hep-lat/0110222Google Scholar
  10. 10.
    V. Pascalusta, hep-ph/0201040Google Scholar
  11. 11.
    B.A. Berg et al. , hep-lat/0007008Google Scholar
  12. 12.
    D. Bukta, G. Karl, B.G. Nickel, chao-dyn/9910026Google Scholar
  13. 13.
    G.K. Savvidy, Phys. Lett. B 130, 303 (1983)Google Scholar
  14. 14.
    G.K. Savvidy, Nucl. Phys. B 246, 302 (1984)Google Scholar
  15. 15.
    G.K. Savvidy, Phys. Lett. B 159, 325 (1985)Google Scholar
  16. 16.
    T. Kawabe, S. Ohta, Phys. Lett. B 334, 127 (1994)Google Scholar
  17. 17.
    T. Kawabe, S. Ohta, Phys. Rev. D 44, 1274 (1991)Google Scholar
  18. 18.
    L. Salasnich, Phys. Rev. D 52, 6189 (1995)Google Scholar
  19. 19.
    L. Salasnich, Mod. Phys. Lett. A 10, 3119 (1995)Google Scholar
  20. 20.
    T. Kawabe, Phys. Lett. B 343, 254 (1995)Google Scholar
  21. 21.
    S.G. Matinyan, B. Muller, Phys. Rev. Lett. 78, 2515 (1997)Google Scholar
  22. 22.
    L. Salasnich, Mod. Phys. Lett. A 12, 1473 (1997)Google Scholar
  23. 23.
    L. Salasnich, J. Math. Phys. 40, 4429 (1999)Google Scholar
  24. 24.
    H. Umezawa, H. Matsumoto, M. Tachiki, Thermofield dynamics (North-Holland. Amsterdam 1982)Google Scholar
  25. 25.
    Y. Takahashi, H. Umezawa, Collective Phenomena 2, 55 (1975) (reprinted in Int. J. Mod. Phys. A 10, 1755 (1996))Google Scholar
  26. 26.
    A. Das, Finite temperature field theory (World Scientific, New York 1997)Google Scholar
  27. 27.
    Thermo Field Theories and Their Applications, edited by Y.X. Gui, F.C. Khanna, Z.B. Su (World Scientific, Singapore 1996)Google Scholar
  28. 28.
    A. Rakhimov, F.C. Khanna, Phys. Rev. C 64, 064907 (2001)Google Scholar
  29. 29.
    T. Matsubara, Prog. Theor. Phys. 14, 351 (1955)Google Scholar
  30. 30.
    J. Schwinger, J. Math. Phys. 2, 407 (1961); L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1964)Google Scholar
  31. 31.
    A.E. Santana, F.C. Khanna, Phys. Lett. A 203, 68 (1995)Google Scholar
  32. 32.
    Quark Matter 2001, Proceedings of the 15th International Conference on Ultra-Relativistic Heavy Ion Collisions, edited by T.J. Hallman, D.E. Kharzeev, J.T. Mitchell, T. Ullrich (North-Holland, Amasterdam 2002); Nucl. Phys. A 698, 1 (2002)Google Scholar
  33. 33.
    V.R. Manfredi, Lett. Nuouo Cimento 40, 135 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • D. U. Matrasulov
    • 1
    • 2
    Email author
  • F. C. Khanna
    • 1
  • U. R. Salomov
    • 3
  • A. E. Santana
    • 4
  1. 1.Physics Department University of AlbertaEdmontonCanada
  2. 2.TRIUMFVancouverCanada
  3. 3.Heat Physics Department of the Uzbek Academy of SciencesTashkentUzbekistan
  4. 4.Universidade be BrasiliaInstituto de FisicaBrasiliaBrazil

Personalised recommendations