Advertisement

Linear derivative Cartan formulation of general relativity

  • W. KummerEmail author
  • H. Schütz
Theoretical Physics

Abstract.

Beside diffeomorphism invariance also manifest SO(3,1) local Lorentz invariance is implemented in a formulation of Einstein gravity (with or without cosmological term) in terms of initially completely independent vielbein and spin connection variables and auxiliary two-form fields. In the systematic study of all possible embeddings of Einstein gravity into that formulation with auxiliary fields, the introduction of a “bi-complex” algebra possesses crucial technical advantages. Certain components of the new two-form fields directly provide canonical momenta for spatial components of all Cartan variables, whereas the remaining ones act as Lagrange multipliers for a large number of constraints, some of which have been proposed already in different, less radical approaches. The time-like components of the Cartan variables play that role for the Lorentz constraints and others associated to the vierbein fields. Although also some ternary ones appear, we show that relations exist between these constraints, and how the Lagrange multipliers are to be determined to take care of second class ones. We believe that our formulation of standard Einstein gravity as a gauge theory with consistent local Poincaré algebra is superior to earlier similar attempts.

Keywords

Gauge Theory Lagrange Multiplier Einstein Gravity Spatial Component Lorentz Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Arnowitt, S. Deser, C.W. Misner, in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York 1962)Google Scholar
  2. 2.
    B.S. DeWitt, Phys. Rev. 160, 1113 (1967)Google Scholar
  3. 3.
    E. Cartan, Leçons sur la Géometrie des Éspaces de Riemann (Gauthier-Villars, Paris 1928)Google Scholar
  4. 4.
    R. Capovilla, J. Dell, T. Jacobson, Class. Quant. Grav. 8, 59 (1991); R. Capoville, J. Dell, T. Jacobson, L. Mason, Class. Quant. Grav. 8, 41 (1991)Google Scholar
  5. 5.
    A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D 36, 1587 (1987)PubMedGoogle Scholar
  6. 6.
    C. Rovelli, Class. Quant. Grav. 8, 1613 (1991); C. Rovelli, L. Smolin, Phys. Rev. Lett. 61, 1155 (1988); Nucl. Phys. B 331, 80 (1990)Google Scholar
  7. 7.
    J.F. Barbero, Phys. Rev. D 49, 6935 (1994); Int. J. Mod. Phys. D 3, 397 (1994); Phys. Rev. D 51, 5507 (1995); S. Holst, Phys. Rev. D 53, 5966 (1996)Google Scholar
  8. 8.
    C. Rovelli, Th. Thiemann, Phys. Rev. D 57, 1009 (1998)Google Scholar
  9. 9.
    Th. Thieman, Phys. Lett. B 380, 257 (1996)Google Scholar
  10. 10.
    A. Palatini, Rend. del Circ. Matem. di Palermo 43, 203 (1919)Google Scholar
  11. 11.
    T.W. Kibble, J. Math. Phys. 2, 212 (1961); D. Sciama, in Recent Developments in General Relativity (Pergamon, Oxford 1962)Google Scholar
  12. 12.
    S. Deser, C.J. Isham, Phys. Rev. D 14, 2505 (1976)Google Scholar
  13. 13.
    M. Henneaux, Phys. Rev. D 27, 986 (1983); M. Henneaux, J.E. Nelson, C. Schomblond, Phys. Rev. D 39, 434 (1989); J.E. Nelson, C. Teitelboim, Phys. Lett. B 69, 81 (1977)Google Scholar
  14. 14.
    C. Teitelboim, Ann. Phys. (N.Y.) 73, 542 (1973)Google Scholar
  15. 15.
    J.M. Charap, M. Henneaux, J.E. Nelson, Quant. Class. Grav. 5, 1405 (1988)Google Scholar
  16. 16.
    L. Castellani, P. van Nieuwenhuizen, M. Pilati, Phys. Rev. D 26, 352 (1982)Google Scholar
  17. 17.
    A. Ashtekar, in Lectures on Non-perturbative Canonical Gravity. Advanced Series in Astrophysics and Cosmology, vol. 6 (World Scientific, Singapore 1991)Google Scholar
  18. 18.
    C.G. Callan Jr., S.B. Giddings, J.A. Harvey, A. Strominger, Phys. Rev. D 45, 1005 (1992)Google Scholar
  19. 19.
    R. Jackiw, Nucl. Phys. B 252, 343 (1985); C. Teitelboim, Phys. Lett. B 126, 1 (1983)Google Scholar
  20. 20.
    W. Kummer, D.J. Schwarz, Phys. Rev. D 45, 3628 (1992); Nucl. Phys. B 382, 171 (1992)Google Scholar
  21. 21.
    M.O. Katanaev, I.V. Volovich, Ann. Phys. (N.Y.) 197, 1 (1990)Google Scholar
  22. 22.
    W. Kummer, H. Liebl, D.V. Vassilevich, Nucl. Phys. B 493, 491 (1997); Nucl. Phys. B 513, 723 (1998)Google Scholar
  23. 23.
    D. Grumiller, W. Kummer, D.V. Vassilevich, Phys. Rep. 369, 327 (2002)Google Scholar
  24. 24.
    P. Schaller, T. Strobl, Quant. Class. Grav. 11, 331 (1994); Mod. Phys. Lett. A 9, 3129 (1994)Google Scholar
  25. 25.
    M.O. Katanaev, W. Kummer, H. Liebl, Phys. Rev. D 53, 5609 (1996)Google Scholar
  26. 26.
    L. Bergamin, W. Kummer, JHEP 074, 1 (2003); Phys. Rev. D 68, 1004005 (2003)Google Scholar
  27. 27.
    L. Bergamin, W. Kummer, Two dimensional N = (2,2) dilaton supergravity from graded Poisson-sigma models (hep-th/0402138)Google Scholar
  28. 28.
    H. Schütz, diploma thesis, Technische Universität Wien, November 1997 (unpublished)Google Scholar
  29. 29.
    J.M. Charap, J.E. Nelson, J. Phys. A 16, 3355 (1983); Class. Quant. Grav. 3, 1061 (1986)Google Scholar
  30. 30.
    S. Alexandrov, Quant. Class. Grav. 17, 4255 (2000)Google Scholar
  31. 31.
    S. Alexandrov, D. Vassilevich, Phys. Rev. D 64, 044023 (2001)Google Scholar
  32. 32.
    J. Plebanski, J. Math. Phys. 18, 2511 (1977); R. De Pietri, L. Freidel, Class. Quant. Grav. 16, 2187 (1999); M.P. Reisenberger, Classical Euclidean general relativity from “left-handed area = right-handed area” (gr-qc/9804061)Google Scholar
  33. 33.
    L. Smolin, A. Starodubtsev, General relativity with a toplogical phase: an action principle (hep-th/0311263); L. Freidel, A. Starodubtsev, Quantum gravity in terms of toplogical observables (hep-th/0501191); St. Alexander, A quantum gravitational relaxation of the cosmological constant (hep-th/0503146)Google Scholar
  34. 34.
    E. Inönü, E.P. Wigner, Proc. Natl. Acad. Sci. U.S. 39, 510 (1953); 40, 119 (1954)Google Scholar
  35. 35.
    M. Henneaux, C. Teitelboim, Quantization of gauge systems (Princeton Univ. Press, New Jersey USA 1992)Google Scholar
  36. 36.
    R. Utiyama, Phys. Rev. 101, 1597 (1956)Google Scholar
  37. 37.
    F.W. Hehl, P. van der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod. Phys. 48, 393 (1976)Google Scholar
  38. 38.
    Supernova Cosmological Project Collaboration, S. Perlmutter et al. , Astrophys. J. 517, 565 (1999)Google Scholar
  39. 39.
    P.V. Townsend, Phys. Rev. D 15, 2802 (1977)Google Scholar
  40. 40.
    L. Bergamin, D. Grumiller, W. Kummer, J. Phys. A 37, 3881 (2004)Google Scholar
  41. 41.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Phys. Rep. 258, 1 (1995)Google Scholar
  42. 42.
    E. Sezgin, P. van Nieuwenhuizen, Phys. Rev. D 22, 301 (1980)Google Scholar
  43. 43.
    R.T. Hammond, Rep. Progr. Phys. 65, 599 (2002)Google Scholar
  44. 44.
    E. Cartan, A. Einstein, Letters of absolute parallelism (Princeton Univ. Press, New Jersey USA 1979)Google Scholar
  45. 45.
    H. Schütz, A New Formulation of Gravity, Doctoral thesis, Technische Universität Wien, May 2002Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Vienna University of TechnologyInstitute for Theoretical PhysicsViennaAustria

Personalised recommendations