Advertisement

Cancellation of energy divergences in Coulomb gauge QCD

  • A. AndrašiEmail author
  • J. C. Taylor
theoretical physics

Abstract.

In the Coulomb gauge of non-abelian gauge theories there are in general, in individual graphs, “energy divergences” on integrating over the loop energy variable for fixed loop momentum. These divergences are avoided in the Hamiltonian, phase-space formulation. But, even in this formulation, energy divergences re-appear at 2-loop order. We show in an example how these cancel between graphs as a consequence of the Ward identities.

Keywords

Field Theory Elementary Particle Gauge Theory Quantum Field Theory Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Heinrich, G. Leibbrandt, Nucl. Phys. B 575, 359 (2000)CrossRefGoogle Scholar
  2. 2.
    R.N. Mohapatra, Phys. Rev. D 4, 22, 378, 1007 (1971)Google Scholar
  3. 3.
    A. Andraši, Eur. Phys. J. C 37, 307 (2004)CrossRefGoogle Scholar
  4. 4.
    A. Cucchieri, D. Zwanziger, Phys. Rev. D 65, 014002 (2002)CrossRefGoogle Scholar
  5. 5.
    N. Christ, T.D. Lee, Phys. Rev. D 22, 939 (1980)CrossRefGoogle Scholar
  6. 6.
    P. Doust, Ann. Phys. 177, 169 (1987); P. Doust, J.C. Taylor, Phys. Lett. 197, 232 (1987)CrossRefGoogle Scholar
  7. 7.
    J.C. Taylor, in Physical and Nonstandard Gauges, Proceedings, Vienna, Austria 1989, edited by P. Gaigg, W. Kummer, M. SchwedaGoogle Scholar
  8. 8.
    J. Schwinger, Phys. Rev. 127, 234 (1962); 130, 406 (1963)CrossRefGoogle Scholar
  9. 9.
    H. Cheng, E.C. Tsai, Phys. Lett. B 176, 130 (1986); Phys. Rev. Lett. 57, 511 (1986)CrossRefGoogle Scholar
  10. 10.
    C. Itzykson, J.B. Zuber, Quantum field theory, International Series in Pure and Applied Physics (McGraw-Hill Inc. 1980)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.“Rudjer Bošković” InstituteZagrebCroatia
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeUK

Personalised recommendations