Advertisement

Worldlines on orbifolds and the Fayet-Iliopoulos term

  • F. BrümmerEmail author
  • M. G. Schmidt
  • Z. Tavartkiladze
theoretical physics

Abstract.

We adapt “string-inspired” worldline techniques to one-loop calculations on orbifolds, in particular on the S1/Z2 orbifold. Our method also allows for the treatment of brane-localized terms, or bulk-brane couplings. For demonstration, we reproduce the well-known result for the one-loop induced Fayet-Iliopoulos term in rigidly supersymmetric Abelian gauge theory, and generalize it to the case where soft supersymmetry breaking mass terms for the bulk scalar fields are present on the branes.

Keywords

Gauge Theory Scalar Field Mass Term Supersymmetry Breaking Abelian Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arkani-Hamed, Y. Grossman, M. Schmaltz, Phys. Rev. D 61, 115004 (2000) [hep-ph/9909411]; N. Arkani-Hamed, L.J. Hall, Y. Nomura, D.R. Smith, N. Weiner, Nucl. Phys. B 605, 81 (2001) [hep-ph/0102090]; M. Puchwein, Z. Kunszt, Annals Phys. 311, 288 (2004) [hep-th/0309069]; L. Da Rold, Phys. Rev. D 69, 105015 (2004) [hep-th/0311063]CrossRefGoogle Scholar
  2. 2.
    R. Hofmann, F. Paccetti Correia, M.G. Schmidt, Z. Tavartkiladze, Nucl. Phys. B 668, 151 (2003) [hep-ph/0305230]; in particular, see Appendix BCrossRefGoogle Scholar
  3. 3.
    Z. Bern, D.A. Kosower, Nucl. Phys. B 379, 451 (1992)CrossRefGoogle Scholar
  4. 4.
    M.J. Strassler, Nucl. Phys. B 385, 145 (1992) [hep-ph/9205205]CrossRefGoogle Scholar
  5. 5.
    M.G. Schmidt, C. Schubert, Phys. Lett. B 318, 438 (1993) [hep-th/9309055]CrossRefGoogle Scholar
  6. 6.
    M.G. Schmidt, C. Schubert, Phys. Lett. B 331, 69 (1994) [hep-th/9403158]CrossRefGoogle Scholar
  7. 7.
    M. Mondragó n, L. Nellen, M.G. Schmidt, C. Schubert, Phys. Lett. B 351, 200 (1995) [hep-th/9502125]; B 366, 212 (1996) [hep-th/9510036]CrossRefGoogle Scholar
  8. 8.
    E. D’Hoker, D.G. Gagné, Nucl. Phys. B 467, 272 (1996) [hep-th/9508131]; B 467, 297 (1996) [hep-th/9512080]CrossRefGoogle Scholar
  9. 9.
    M. Reuter, M.G. Schmidt, C. Schubert, Annals Phys. 259, 313 (1997) [hep-th/9610191]; D. Fliegner, M.G. Schmidt, C. Schubert, Z. Phys. C 64, 111 (1994) [hep-ph/9401221]; D. Fliegner, P. Haberl, M.G. Schmidt, C. Schubert, Annals Phys. 264, 51 (1998) [hep-th/9707189]; H.T. Sato, M.G. Schmidt, C. Zahlten, Nucl. Phys. B 579, 492 (2000) [hep-th/0003070]; T. Auer, M.G. Schmidt, C. Zahlten, Nucl. Phys. B 677, 430 (2004) [hep-th/0306243]. For a review of the method, see C. Schubert, Phys. Rept. 355, 73 (2001) [hep-th/0101036]CrossRefGoogle Scholar
  10. 10.
    N. Arkani-Hamed, T. Gregoire, J. Wacker, JHEP 0203, 055 (2002) [hep-th/0101233]; A. Hebecker, Nucl. Phys. B 632, 101 (2002) [hep-ph/0112230]; D. Martí, A. Pomarol, Phys. Rev. D 64, 105025 (2001) [hep-th/0106256]CrossRefGoogle Scholar
  11. 11.
    R. Barbieri, R. Contino, P. Creminelli, R. Rattazzi, C.A. Scrucca, Phys. Rev. D 66, 024025 (2002) [hep-th/0203039]CrossRefGoogle Scholar
  12. 12.
    S. Groot Nibbelink, H.P. Nilles, M. Olechowski, Phys. Lett. B 536, 270 (2002) [hep-th/0203055]; Nucl. Phys. B 640, 171 (2002) [hep-th/0205012]CrossRefGoogle Scholar
  13. 13.
    D. Martí, A. Pomarol, Phys. Rev. D 66, 125005 (2002) [hep-ph/0205034]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Physics DepartmentTheory Division, CERNGeneva 23Switzerland

Personalised recommendations