Advertisement

Probing new physics from top-charm associated productions at Linear Colliders

  • Junjie Cao
  • Guoli Liu
  • Jin Min Yang
theoretical physics

Abstract.

The top-charm associated productions via e + e-, \(e^- \gamma\) and \(\gamma \gamma\) collisions at linear colliders, which are extremely suppressed in the standard model (SM), could be significantly enhanced in some extensions of the SM. In this article we calculate the full contribution of the top-color-assisted technicolor (TC2) to these productions and then compare the results with the existing predictions of the SM, the general two-Higgs-doublet model and the minimal supersymmetric model. We find that the TC2 model predicts much larger production rates than other models and the largest-rate channel is \(\gamma \gamma \to t \bar{c}\), which exceeds 10 fb for a large part of the parameter space. From the analysis of the observability of such productions at the future linear colliders, we find that the predictions of the TC2 model can reach the observable level for a large part of the parameter space while the predictions of other models are hardly accessible.

Keywords

Field Theory Elementary Particle Production Rate Quantum Field Theory Parameter Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For model-independent analyses, see, e.g., C.T. Hill, S.J. Parke, Phys. Rev. D 49, 4454 (1994); K. Whisnant et al. , Phys. Rev. D 56, 467 (1997); K. Hikasa et al. , Phys. Rev. D 58, 114003 (1998)CrossRefGoogle Scholar
  2. 2.
    C.T. Hill, Phys. Lett. B 345, 483 (1995)CrossRefGoogle Scholar
  3. 3.
    K. Lane, E. Eichten, Phys. Lett. B 352, 382 (1995); K. Lane, Phys. Lett. B 433, 96 (1998)CrossRefGoogle Scholar
  4. 4.
    G. Cvetic, Rev. Mod. Phys. 71, 513 (1999)CrossRefGoogle Scholar
  5. 5.
    E. Malkawi, T. Tait, Phys. Rev. D 54, 5758 (1996); A. Datta et al. , Phys. Rev. D 56, 3107 (1997); R.J. Oakes et al. , Phys. Rev. D 57, 534 (1998); K. Hikasa, J.M. Yang, B.-L. Young, Phys. Rev. D 60, 114041 (1999); P. Chiappetta et al. , Phys. Rev. D 61, 115008 (2000);CrossRefGoogle Scholar
  6. 6.
    T. Tait, C. P. Yuan, Phys. Rev. D 55, 7300 (1997); M. Hosch et al. , Phys. Rev. D 58, 034002 (1998); S. Mrenna, C.P. Yuan, Phys. Lett. B 367, 188 (1996); K.J. Abraham et al. , Phys. Lett. B 514, 72 (2001); Phys. Rev. D 63, 034011 (2001); F. del Aguila, J.A. Aguilar-Saavedra, R. Miquel, Phys. Rev. Lett. 82, 1628 (1999)CrossRefGoogle Scholar
  7. 7.
    H.J. He, C.P. Yuan, Phys. Rev. Lett. 83, 28 (1999)CrossRefGoogle Scholar
  8. 8.
    G. Burdman, Phys. Rev. Lett. 83, 2888 (1999)CrossRefGoogle Scholar
  9. 9.
    J. Cao, Z. Xiong, J.M. Yang, Phys. Rev. D 67, 071701 (2003); F. Larios, F. Penunuri, hep-ph/0311056CrossRefGoogle Scholar
  10. 10.
    C. Yue et al. , Mod. Phys. Lett. A 17, 2349 (2002); X. Wang et al. , Phys. Rev. D 66, 075009 (2002)CrossRefGoogle Scholar
  11. 11.
    For FCNC top-quark decays in TC2 theory, see X.L. Wang et al. , Phys. Rev. D 50, 5781 (1994); C. Yue et al. , Phys. Lett. B 508, 290 (2001); G. Lu, F. Yin, X. Wang, L. Wan, Phys. Rev. D 68, 015002 (2003)CrossRefGoogle Scholar
  12. 12.
    For FCNC top quark decays in the MSSM, see C.S. Li, R.J. Oakes, J.M. Yang, Phys. Rev. D 49, 293 (1994); G. Couture, C. Hamzaoui, H. Konig, Phys. Rev. D 52, 1713 (1995); J.L. Lopez, D.V. Nanopoulos, R. Rangarajan, Phys. Rev. D 56, 3100 (1997); G.M. de Divitiis, R. Petronzio, L. Silvestrini, Nucl. Phys. B 504, 45 (1997); J.M. Yang, B.-L. Young, X. Zhang, Phys. Rev. D 58, 055001 (1998); J.M. Yang, C.S. Li, Phys. Rev. D 49, 3412 (1994); J. Guasch, J. Sola, Nucl. Phys. B 562, 3 (1999); G. Eilam et al. , Phys. Lett. B 510, 227 (2001); J.J. Liu, C.S. Li, L.L. Yang, L.G. Jin, Phys. Lett. B 599, 92 (2004)CrossRefGoogle Scholar
  13. 13.
    For top-charm associated productions in the MSSM, see J. Cao, Z. Xiong, J.M. Yang, Nucl. Phys. B 651, 87 (2003); C.S. Li, X. Zhang, S.H. Zhu, Phys. Rev. D 60, 077702 (1999); J.J. Liu, C.S. Li, L.L. Yang, L.G. Jin, Nucl. Phys. B 705, 3 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Zeng-Hui et al. , Eur. Phys. J. C 16, 541 (2000)Google Scholar
  15. 15.
    J. Yi et al. , Phys. Rev. D 57, 4343 (1998)CrossRefGoogle Scholar
  16. 16.
    C. Yue et al. , Phys. Lett. B 525,301 (2002)CrossRefGoogle Scholar
  17. 17.
    C. Yue, G. Liu, Q. Xu, Phys. Lett. B 509, 294 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Yue et al. Phys. Lett. B 496, 93 (2000)Google Scholar
  19. 19.
    For recent reviews on top quark, see, e.g., C.T. Hill, E. Simmons, hep-ph/0203079; C.-P. Yuan, hep-ph/0203088; E. Simmons, hep-ph/0211335; S. Willenbrock, hep-ph/0211067; D. Chakraborty, J. Konigsberg, D. Rainwater, hep-ph/0303092Google Scholar
  20. 20.
    K. Abe et al. , ACFA Linear Collider Working Group, hep- ph/0109166Google Scholar
  21. 21.
    G. Buchalla, G. Burdman, C.T. Hill, D. Kominis, Phys. Rev. D 53, 5185 (1996)CrossRefGoogle Scholar
  22. 22.
    T.P. Cheng, M. Sher, Phys. Rev. D 35, 3484 (1987); L.J. Hall, S. Weinberg, Phys. Rev. D 48, 979 (1993)CrossRefGoogle Scholar
  23. 23.
    H.E. Haber, G.L. Kane, Phys. Rept. 117, 75 (1985); J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986)CrossRefGoogle Scholar
  24. 24.
    A. Stange, S. Willenbrock, Phys. Rev. D 48, 2054 (1993); C.S. Li, J.M. Yang, Y.l. Zhu, H.Y. Zhou, Phys. Rev. D 54, 4662 (1996); C.S. Li, R.J. Oakes, J.M. Yang, Phys. Rev. D 55, 1672 (1997); H.Y. Zhou, C.S. Li, Y.P. Kuang, Phys. Rev. D 55, 4412 (1997)CrossRefGoogle Scholar
  25. 25.
    S.J. Brodsky, T. Kinoshita, H. Terazawa, Phys. Rev. D 4, 1532 (1971); H. Terazawa, Rev. Mod. Phys. 45, 615 (1973); B.A. Kniehl, Phys. Lett. B 254, 267 (1991)CrossRefGoogle Scholar
  26. 26.
    R. Cahn, S. Dawson, Phys. Lett. B 136, 196 (1984); M. Chanowitz, M.K. Gaillard, Phys. Lett. B 142, 85 (1984); G.L. Kane et al. , Phys. Lett. B 148, 367 (1984)CrossRefGoogle Scholar
  27. 27.
    I.F. Ginzburg et al. , Nucl. Instrum. 219, 5 (1984); V.I. Telnov, Nucl. Instrum. Meth. 294, 72 (1990)CrossRefGoogle Scholar
  28. 28.
    C.T. Hill, G.G. Ross, Nucl. Phys. B 311, 253 (1988); Phys. Lett. B 203, 125 (1988)CrossRefGoogle Scholar
  29. 29.
    B. Balaji, Phys. Rev. D 53, 1699 (1996).CrossRefGoogle Scholar
  30. 30.
    H. Pagels, S. Stokar, Phys. Rev. D 20, 2947 (1979)CrossRefGoogle Scholar
  31. 31.
    E. Farhi, L. Susskind, Phys. Rept. 74, 277 (1981)CrossRefGoogle Scholar
  32. 32.
    C.T. Hill, Phys. Lett. B 266, 419 (1991)CrossRefGoogle Scholar
  33. 33.
    R.S. Chivukula, B. Dobrescu, H. Georgi, C.T. Hill, Phys. Rev. D 59, 075003 (1999)CrossRefGoogle Scholar
  34. 34.
    B. Balaji, Phys. Lett. B 393, 89 (1997)CrossRefGoogle Scholar
  35. 35.
    G. Burdman, D. Kominis, Phys. Lett. B 403, 101 (1997); W. Loinaz, T. Takeuchi, Phys. Rev. D 60, 015005 (1999)CrossRefGoogle Scholar
  36. 36.
    C.T. Hill, X.m. Zhang, Phys. Rev. D 51, 3563 (1995); C. Yue, Y.P. Kuang, X. Wang, W. Li, Phys. Rev. D 62, 055005 (2000)CrossRefGoogle Scholar
  37. 37.
    Particle Physics Group. Eur. Phys. J. C 15, 274 (2000); K. Hagiwara et al. , Phys. Rev. D 66, 010001 (2002)Google Scholar
  38. 38.
    A.K. Leibovich, D. Rainwater, Phys. Rev. D 65, 055012 (2002)CrossRefGoogle Scholar
  39. 39.
    K.J. Abraham, K. Whisnant, B.-L. Young, Phys. Lett. B 419, 381 (1998)CrossRefGoogle Scholar
  40. 40.
    D. Atwood, L. Reina, A. Soni, Phys. Rev. D 54, 3296 (1996); D 55, 3156 (1997); L. Reina, hep-ph/9712426; M. Sher, hep-ph/9809590; D. Bowser-Chao, K. Cheung, W.Y. Keung, Phys. Rev. D 59, 115006 (1999)CrossRefGoogle Scholar
  41. 41.
    L.J. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994); T. Blazek, S. Raby, S. Pokorski, Phys. Rev. D 52, 4151 (1995); M. Carena, S. Mrenna, C.E.M. Wagner, Phys. Rev. D 60, 075010 (1999); K.S. Babu, C.F. Kolda, Phys. Lett. B 451, 77 (1999); Phys. Rev. Lett. 84, 228 (2000)CrossRefGoogle Scholar
  42. 42.
    See, e.g., M. Misiak, S. Pokorski, J. Rosiek, Adv. Ser. Direct. High Energy Phys. 15, 795 (1998); K. Hikasa, M. Kobayashi, Phys. Rev. D 36, 724 (1987)Google Scholar
  43. 43.
    S. Bar-Shalom, G. Eilam, A. Soni, J. Wudka, Phys. Rev. Lett. 79, 1217 (1997); Phys. Rev. D 57, 2957 (1998)CrossRefGoogle Scholar
  44. 44.
    C.S. Huang, X.H. Wu, S.H. Zhu, Phys. Lett. B 452, 143 (1999)CrossRefGoogle Scholar
  45. 45.
    D. Atwood, L. Reina, A. Soni, Phys. Rev. D 53, 1199 (1996)CrossRefGoogle Scholar
  46. 46.
    G. Eilam, J.L. Hewett, A. Soni, Phys. Rev. D 44, 1473 (1991); B. Mele, S. Petrarca, A. Soddu, Phys. Lett. B 435, 401 (1998)CrossRefGoogle Scholar
  47. 47.
    D. Atwood, L. Reina, A. Soni, Phys. Rev. D 55, 3156 (1997); R.A. Diaz, R. Martinez, J.A. Rodriguez, hep-ph/0103307.CrossRefGoogle Scholar
  48. 48.
    J. Guasch, J. Sola, hep-ph/9909503; S. Bejar, J. Guasch, J. Sola, Nucl. Phys. B 600, 21 (2001)CrossRefGoogle Scholar
  49. 49.
    F. Abe et al. , CDF Collaboration, Phys. Rev. Lett. 80, 2525 (1998); J.A. Aguilar-Saavedra, G.C. Branco, Phys. Lett. B 495, 347 (2000);CrossRefGoogle Scholar
  50. 50.
    R. Frey et al. , FERMILAB-CONF-97-085 (1997); hep-ph/9704243Google Scholar
  51. 51.
    S. Bar-Sharlom, J. Wudka, Phys. Rev. Lett. 86, 3722 (2001)CrossRefPubMedGoogle Scholar
  52. 52.
    T. Han, J.L. Hewett, Phys. Rev. D 60, 074015 (1999); S. Bar-Shalom, J. Wudka, Phys. Rev. D 60, 094016 (1999); J.A. Aguilar-Saavedra, Phys. Lett. B 502, 115 (2001); J.A. Aguilar-Saavedra, T. Riemann, hep-ph/0102197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • Junjie Cao
    • 1
    • 2
  • Guoli Liu
    • 2
  • Jin Min Yang
    • 2
    • 3
  1. 1.Department of PhysicsHenan Normal UniversityHenanP.R. China
  2. 2.Institute of Theoretical PhysicsAcademia SinicaBeijingP.R. China
  3. 3.CCAST (World Laboratory)BeijingP.R. China

Personalised recommendations