Advertisement

Anomalous gauge-boson couplings and the Higgs-boson mass

  • O. NachtmannEmail author
  • F. Nagel
  • M. Pospischil
Theoretical Physics

Abstract.

We study anomalous gauge-boson couplings induced by a locally SU(2) × U(1) invariant effective Lagrangian containing ten operators of dimension six built from boson fields of the standard model (SM) before spontaneous symmetry breaking (SSB). After SSB some operators lead to new three- and four-gauge-boson interactions, some contribute to the diagonal and off-diagonal kinetic terms of the gauge bosons, to the kinetic term of the Higgs boson and to the mass terms of the W and Z bosons. This requires a renormalisation of the gauge-boson fields, which, in turn, modifies the charged- and neutral-current interactions, although none of the additional operators contain fermion fields. Also the Higgs field must be renormalised. Bounds on the anomalous couplings from electroweak precision measurements at LEP and SLC are correlated with the Higgs-boson mass m H . Rather moderate values of anomalous couplings allow m H up to 500 GeV. At a future linear collider the triple-gauge-boson couplings \(\gamma WW\) and ZWW can be measured in the reaction \(e^ + e^- \rightarrow WW\). We compare three approaches to anomalous gauge-boson couplings: the form-factor approach, the addition of anomalous-coupling terms to the SM Lagrangian after and, as outlined above, before SSB. The translation of the bounds on the couplings from one approach to another is not straightforward. We show that it can be done for the process \(e^ + e^- \rightarrow WW\) by defining new effective \(\gamma WW\) and ZWW couplings.

Keywords

Higgs Boson Gauge Boson Mass Term Particle Acceleration Precision Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kilian, Dynamical electroweak symmetry breaking, to appear in Linear Collider Physics in the New Millenium, edited by K. Fujii, D. Miller, A. Soni (World Scientific) [hep-ph/0303015]Google Scholar
  2. 2.
    K.J.F. Gaemers, G.J. Gounaris, Z. Phys. C 1, 259 (1979)Google Scholar
  3. 3.
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)Google Scholar
  4. 4.
    G. Gounaris et al. , Triple Gauge Boson Couplings, hep-ph/9601233; F.A. Berends et al. , Report of the working group on the measurement of triple gauge boson couplings, J. Phys. G 24, 405 (1998) [hep-ph/9709413]Google Scholar
  5. 5.
    M. Diehl, O. Nachtmann, Z. Phys. C 62, 397 (1994)Google Scholar
  6. 6.
    M. Diehl, O. Nachtmann, Eur. Phys. J. C 1, 177 (1998) [hep-ph/9702208]Google Scholar
  7. 7.
    W. Menges, A study of charged current triple gauge couplings at TESLA, LC-PHSM-2001-022.Google Scholar
  8. 8.
    T. Abe et al. [American Linear Collider Working Group Collaboration], in Proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) edited by N. Graf, SLAC-R-570 Resource book for Snowmass 2001, 30 June-21 July 2001, Snowmass, Colorado [hep-ex/0106055-58]Google Scholar
  9. 9.
    I. Bozovic-Jelisavcic, K. Mönig, J. Sekaric, Measurement of trilinear gauge couplings at a gamma gamma and e gamma collider, hep-ph/0210308Google Scholar
  10. 10.
    M. Diehl, O. Nachtmann, F. Nagel, Eur. Phys. J. C 27, 375 (2003) [hep-ph/0209229]Google Scholar
  11. 11.
    M. Diehl, O. Nachtmann, F. Nagel, Eur. Phys. J. C 32, 17 (2003) [hep-ph/0306247]Google Scholar
  12. 12.
    S. Weinberg, The quantum theory of fields II. (Cambridge Univ. Pr. 1996)Google Scholar
  13. 13.
    W. Bernreuther, O. Nachtmann, Z. Phys. C 73, 647 (1997) [hep-ph/9603331]Google Scholar
  14. 14.
    W. Bernreuther, O. Nachtmann, Phys. Rev. Lett. 63, 2787 (1989) [Erratum 64, 1072 (1990)]PubMedGoogle Scholar
  15. 15.
    W. Bernreuther, U. Löw, J.P. Ma, O. Nachtmann, Z. Phys. C 43, 117 (1989)Google Scholar
  16. 16.
    W. Buchmüller, D. Wyler, Nucl. Phys. B 268, 621 (1986)Google Scholar
  17. 17.
    C.N. Leung, S.T. Love, S. Rao, Z. Phys. C 31, 433 (1986)Google Scholar
  18. 18.
    K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Lett. B 283, 353 (1992)Google Scholar
  19. 19.
    K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993)Google Scholar
  20. 20.
    O. Nachtmann, Elementary particle physics: concepts and phenomena. (Springer, Berlin 1990)Google Scholar
  21. 21.
    F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74, 1936 (1995)PubMedGoogle Scholar
  22. 22.
    B. Abbott et al. [D0 Collaboration], Phys. Rev. D 60, 072002 (1999) [hep-ex/9905005]Google Scholar
  23. 23.
    I. Kuss, E. Nuss, Eur. Phys. J. C 4, 641 (1998) [hep-ph/9706406]Google Scholar
  24. 24.
    D. Green, Vector boson fusion and quartic boson couplings, hep-ph/0306160Google Scholar
  25. 25.
    F.K. Diakonos, O. Korakianitis, C.G. Papadopoulos, C. Philippides, W.J. Stirling, Phys. Lett. B 303, 177 (1993) [hep-ph/9301238]; A.S. Belyaev, O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, S.F. Novaes, I. Zacharov, Phys. Rev. D 59, 015022 (1999) [hep-ph/9805229]; O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti, Phys. Rev. D 69, 095005 (2004) [hep-ph/0310141]; E.N. Argyres, G. Katsilieris, O. Korakiantis, C.G. Papadopoulos, C. Philippides, W.J. Stirling, Phys. Lett. B 280, 324 (1992)Google Scholar
  26. 26.
    TESLA Technical Design Report Part I: Executive Summary, edited by F. Richard, J.R. Schneider, D. Trines, A. Wagner, DESY, Hamburg, 2001 [hep-ph/0106314]Google Scholar
  27. 27.
    TESLA Technical Design Report Part III: Physics at an e+e Linear Collider, edited by R.-D. Heuer, D. Miller, F. Richard, P.M. Zerwas, DESY, Hamburg, 2001 [hep-ph/0106315]Google Scholar
  28. 28.
    K. Mönig, Electroweak gauge theories and alternative theories at a future linear e+e collider, hep-ph/0309021Google Scholar
  29. 29.
    K. Abe et al. [ACFA Linear Collider Working Group Collaboration], Particle Physics Experiments at JLC, hep-ph/0109166Google Scholar
  30. 30.
    J.R. Ellis, E. Keil, G. Rolandi, Options for future colliders at CERN, CERN-EP-98-03; J.P. Delahaye et al. , CLIC--a two-beam multi-TeV e+e linear collider, in Proceedings of the 20th International Linac Conference LINAC 2000, edited by Alexander W. Chao, eConf C000821, MO201 (2000) [physics/0008064]; A. De Roeck, WW scattering at CLIC, prepared for 5th International Linear Collider Workshop (LCWS 2000), Fermilab, Batavia, Illinois, 24-28 October 2000Google Scholar
  31. 31.
    D. Atwood, A. Soni, Phys. Rev. D 45, 2405 (1992); M. Davier, L. Duflot, F. Le Diberder, A. Rougé, Phys. Lett. B 306, 411 (1993)Google Scholar
  32. 32.
    TESLA Technical Design Report, Part VI, Chapter 1: Photon collider at TESLA, B. Badelek et al. , DESY, Hamburg, 2001 [hep-ex/0108012]Google Scholar
  33. 33.
    H. Burkhardt, V. Telnov, CLIC 3-TeV photon collider option, CERN-SL-2002-013-AP.Google Scholar
  34. 34.
    O. Nachtmann, F. Nagel, M. Pospischil, A. Uterman, manuscripts in preparationGoogle Scholar
  35. 35.
    K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002)Google Scholar
  36. 36.
    H. Goldstein, Classical mechanics (Addison-Wesley, Reading, Mass. 1965)Google Scholar
  37. 37.
    M. Kuroda, J. Maalampi, K.H. Schwarzer, D. Schildknecht, Nucl. Phys. B 284, 271 (1987)Google Scholar
  38. 38.
    C.P. Burgess, S. Godfrey, H. König, D. London, I. Maksymyk, Phys. Rev. D 49, 6115 (1994) [hep-ph/9312291]Google Scholar
  39. 39.
    S. Haywood et al. , Electroweak physics, hep-ph/0003275Google Scholar
  40. 40.
    M. Böhm, A. Denner, H. Joos, Gauge theories of the strong and electroweak interaction (Teubner, Stuttgart 2001)Google Scholar
  41. 41.
    D. Abbaneo et al. , A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0212036Google Scholar
  42. 42.
    G. Altarelli, Nucl. Instrum. Meth. A 518, 1 (2004) [hep-ph/0306055]Google Scholar
  43. 43.
    C. Grosse-Knetter, I. Kuss, D. Schildknecht, Z. Phys. C 60, 375 (1993) [hep-ph/9304281]; M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 409, 22 (1993); B 419, 240 (1994) [hep-ph/9312202]Google Scholar
  44. 44.
    G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 19, 229 (2001) [hep-ex/0009021]Google Scholar
  45. 45.
    A. Heister et al. [ALEPH Collaboration], Eur. Phys. J. C 21, 423 (2001) [hep-ex/0104034]Google Scholar
  46. 46.
    B. Grzadkowski, J. Pliszka, J. Wudka, Phys. Rev. D 69, 033001 (2004) [hep-ph/0307338]Google Scholar
  47. 47.
    M.W. Grünewald et al. , Four-Fermion Production in Electron Positron Collisions, hep-ph/0005309Google Scholar
  48. 48.
    K. Mönig, Physics of Electroweak Gauge Bosons, to appear in Linear Collider Physics in the New Millennium , edited by K. Fujii, D. Miller, A. Soni (World Scientific) [hep-ph/0303023]Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikHeidelbergGermany

Personalised recommendations