Advertisement

Optimal observables and phase-space ambiguities

  • O. NachtmannEmail author
  • F. Nagel
theoretical physics

Abstract.

Optimal observables are known to lead to minimal statistical errors on parameters for a given normalised event distribution of a physics reaction. Thereby all statistical correlations are taken into account. Therefore, on the one hand they are a useful tool to extract values on a set of parameters from measured data. On the other hand one can calculate the minimal constraints on these parameters achievable by any data-analysis method for the specific reaction. In case the final states can be reconstructed without ambiguities optimal observables have a particularly simple form. We give explicit formulae for the optimal observables for generic reactions in case of ambiguities in the reconstruction of the final state and for general parameterisation of the final-state phase space.

Keywords

Field Theory Phase Space Elementary Particle Quantum Field Theory Measured Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TESLA Technical Design Report Part I: Executive Summary, edited by F. Richard, J. R. Schneider, D. Trines, A. Wagner, DESY, Hamburg, 2001 [hep-ph/0106314]; TESLA Technical Design Report Part III: Physics at an e + e Linear Collider, edited by R.-D. Heuer, D. Miller, F. Richard, P. M. Zerwas, DESY, Hamburg, 2001 [hep-ph/0106315]; TESLA Technical Design Report, Part VI, Chap. 1: Photon collider at TESLA, B. Badelek et al. , DESY, Hamburg, 2001 [hep-ex/0108012]Google Scholar
  2. 2.
    J. R. Ellis, E. Keil, G. Rolandi, Options for Future Colliders at CERN, CERN-EP-98-03; J. P. Delahaye et al. , CLIC--a Two-Beam Multi-TeV e + e Linear Collider, in Proceedings of the 20th International Linac Conference LINAC 2000, edited by Alexander W. Chao, eConf C000821, MO201 (2000) [physics/0008064]; Physics at the CLIC Multi-TeV Linear Collider: Report of the CLIC Physics Working Group, edited by M. Battaglia et al. , CERN, Geneva, 2004, CERN-2004-005; H. Burkhardt, V. Telnov, CLIC 3-TeV Photon Collider Option, CERN-SL-2002-013-APGoogle Scholar
  3. 3.
    O. Nachtmann, Elementary particle physics: concepts and phenomena (Springer, Berlin 1990)Google Scholar
  4. 4.
    K. Hagiwara, R. D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)CrossRefGoogle Scholar
  5. 5.
    M. Diehl, O. Nachtmann, F. Nagel, Eur. Phys. J. C 27, 375 (2003) [hep-ph/0209229]Google Scholar
  6. 6.
    P. Abreu et al. [DELPHI Collaboration], Phys. Lett. B 459, 382 (1999); M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 467, 171 (1999) [hep-ex/9910008]; G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 19, 1 (2001) [hep-ex/0009022]Google Scholar
  7. 7.
    M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 487, 229 (2000) [hep-ex/0007005]; G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 19, 229 (2001) [hep-ex/0009021]Google Scholar
  8. 8.
    A. Heister et al. [ALEPH Collaboration], Eur. Phys. J. C 21, 423 (2001) [hep-ex/0104034]Google Scholar
  9. 9.
    M. Diehl, O. Nachtmann, Z. Phys. C 62, 397 (1994)Google Scholar
  10. 10.
    M. Diehl, O. Nachtmann, Eur. Phys. J. C 1, 177 (1998) [hep-ph/9702208]Google Scholar
  11. 11.
    W. Menges, A study of charged current triple gauge couplings at TESLA, LC-PHSM-2001-022Google Scholar
  12. 12.
    G. Moortgat-Pick, in Proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) edited by R. Davidson, C. Quigg, hep-ph/0202082; K. Mönig, LC-PHSM-2000-059, in 2nd ECFA/DESY Study 1998-2001, p. 1346; R. W. Assmann, F. Zimmermann, Polarization Issues at CLIC, in Proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), edited by R. Davidson and C. Quigg, CERN-SL-2001-064-AP; G. Alexander et al. , SLAC-Proposal-E-166, Stanford, 2003Google Scholar
  13. 13.
    G. Moortgat-Pick, H. M. Steiner, Eur. Phys. J. direct C 3, 6 (2001) [hep-ph/0106155]; J. Erler et al. , in Proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), edited N. Graf, eConf C010630, E3004 (2001) [hep-ph/0112070]; G. Moortgat-Pick, AIP Conf. Proc. 675, 206 (2003) [hep-ph/0303234]; see also the POWER working group homepage: http://www.ippp.dur.ac.ukgudridpower/, working group report in preparation Google Scholar
  14. 14.
    M. Diehl, O. Nachtmann, F. Nagel, Eur. Phys. J. C 32, 17 (2003) [hep-ph/0306247]Google Scholar
  15. 15.
    W. Buchmüller, D. Wyler, Nucl. Phys. B 268, 621 (1986)Google Scholar
  16. 16.
    O. Nachtmann, F. Nagel, M. Pospischil, Anomalous gauge-boson couplings and the Higgs-boson mass, hep-ph/0404006Google Scholar
  17. 17.
    D. Atwood, A. Soni, Phys. Rev. D 45, 2405 (1992); M. Davier, L. Duflot, F. Le Diberder, A. Rougé, Phys. Lett. B 306, 411 (1993)Google Scholar
  18. 18.
    K. Ackerstaff et al. [OPAL Collaboration], Z. Phys. C 74, 403 (1997); N. Wermes, Nucl. Phys. Proc. Suppl. 55C, 313 (1997)Google Scholar
  19. 19.
    S. Dhamotharan, Untersuchung des Drei-Eichbosonen-Vertex in W-Paarerzeugung bei LEP2, Doctoral thesis, HD-IHEP 99-04, University Heidelberg, 1999Google Scholar
  20. 20.
    O. Nachtmann, M. Pospischil, F. Nagel, manuscripts in preparationGoogle Scholar
  21. 21.
    H. Cramér, Mathematical methods of statistics (Princeton University Press 1958)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikHeidelbergGermany

Personalised recommendations