Study of the neutron quantum states in the gravity field
- 113 Citations
- 200 Downloads
Abstract.
We have studied neutron quantum states in the potential well formed by the earth’s gravitational field and a horizontal mirror. The estimated characteristic sizes of the neutron wave functions in the two lowest quantum states correspond to expectations with an experimental accuracy. A position-sensitive neutron detector with an extra-high spatial resolution of \(\sim 2 \mathrm{\mu} \)m was developed and tested for this particular experiment, to be used to measure the spatial density distribution in a standing neutron wave above a mirror for a set of some of the lowest quantum states. The present experiment can be used to set an upper limit for an additional short-range fundamental force. We studied methodological uncertainties as well as the feasibility of improving further the accuracy of this experiment.
Preview
Unable to display preview. Download preview PDF.
References
- 1.I.I. Goldman, V.D. Krivchenkov, V.I. Kogan, V.M. Galitscii, Problems in Quantum Mechanics (New York, Academic, 1960)Google Scholar
- 2.L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Oxford, Pergamon, 1976)Google Scholar
- 3.S. Flügge, Practical Quantum Mechanics I (Berlin, Springer, 1974)Google Scholar
- 4.D. ter Haar, Selected Problems in Quantum Mechanics (Academic, New York, 1964)Google Scholar
- 5.J.J. Sakurai, Modern Quantum Mechanics (Benjamin/Cummings, Menlo Park, 1985)Google Scholar
- 6.V.I. Luschikov, A.I. Frank, JETP Lett. 28(9), 559 (1978)Google Scholar
- 7.V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Baeßler, F.J. Rueß, Th. Stöferle, A. Westphal, A.M. Gagarsky, G.A. Petrov, A.V. Strelkov, Nature 415, 297 (2002)Google Scholar
- 8.V.V. Nesvizhevsky, H.G. Börner, A.M. Gagarski, A.K. Petukhov, G.A. Petrov, H. Abele, S. Baeßler, G. Divkovic, F.J. Rueß, Th. Stöferle, A. Westphal, A.V. Strelkov, K.V. Protasov, A.Yu. Voronin, Phys. Rev. D 67, 102002-1 (2003)Google Scholar
- 9.V.V. Nesvizhevsky, H.G. Börner, A.M. Gagarsky, G.A. Petrov, A.K. Petukhov, H. Abele, S. Baessler, Th. Stöferle, S.M. Soloviev, Nucl. Inst. and Meth. in Phys. Res. 440A(3), 754 (2000)Google Scholar
- 10.A. Westphal, Diploma thesis, University of Heidelberg, 2001; gr-qc/0208062 (2003)Google Scholar
- 11.O. Scharpf, Physica B 156, 631, 639 (1989)Google Scholar
- 12.V.V. Nesvizhevsky, ILL 96NE14T, 1996 (unpublished)Google Scholar
- 13.J. Felber, R. Gähler, H. Rauch, R. Golub, Phys. Rev. A53(1), 319 (1996)Google Scholar
- 14.R. Onofrio, L. Viola, Phys. Rev. A 53, 3773 (1996)Google Scholar
- 15.L. Viola, R. Onofrio, Phys. Rev. D 55, 455 (1997)Google Scholar
- 16.Review of Particle Physics, Phys. Rev. D 66, 945 (2002)Google Scholar
- 17.O. Bertolami, F.M. Nunes, Class. and Quant. Grav. 20(5), 61 (2002)Google Scholar
- 18.N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998)CrossRefGoogle Scholar
- 19.N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 086004 (1999)CrossRefGoogle Scholar
- 20.V.V. Nesvizhevsky, K.V. Protasov, Class. and Quant. Grav. 21, 4557 (2004)Google Scholar
- 21.M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001)Google Scholar
- 22.H. Abele, S. Baeßler, A. Westphal, Lect. Notes Phys. 631, 355Google Scholar
- 23.I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 236, 257 (1998)Google Scholar