Advertisement

Non-Abelian color dielectric - towards the effective model of the low energy QCD

  • A. WereszczyńskiEmail author
  • M. Ślusarczyk
theoretical physics

Abstract.

Lattice motivated triplet color scalar field theory is analyzed. We consider non-minimal as well as covariant derivative coupling with SU(2) gauge fields. Field configurations generated by external electric sources are presented. Moreover non-Abelian magnetic monopoles are found. Dependence on the spatial coordinates in the obtained solutions is identical as in the usual Abelian case. We show also that after a decomposition of the fields a modified Faddeev-Niemi action can be obtained. It contains explicit O(3) symmetry breaking term parameterized by the condensate of an isoscalar field. Due to that Goldstone bosons observed in the original Faddeev-Niemi model are removed.

Keywords

Field Theory Elementary Particle Quantum Field Theory Scalar Field Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Creutz, Quarks, Gluons and Lattices (Cambridge University Press, Cambridge, New York 1983)Google Scholar
  2. 2.
    H.G. Dosch, Phys. Lett. B 190, 555 (1987); H.G. Dosch, Yu. Simonov, Phys. Lett. B 205, 339 (1988)Google Scholar
  3. 3.
    S.V. Shabanov, Phys. Lett. B 458, 322 (1999); Phys. Lett. B 463, 263 (1999)CrossRefGoogle Scholar
  4. 4.
    L.D. Faddeev, A.J. Niemi, Phys. Rev. Lett. 82, 1624 (1999)CrossRefGoogle Scholar
  5. 5.
    L.D. Faddeev, A.J. Niemi, Nature 387, 58 (1997)CrossRefGoogle Scholar
  6. 6.
    H.B. Nielsen, A.Patkos, Nucl. Phys. B 195, 137 (1982)CrossRefGoogle Scholar
  7. 7.
    J.F. Mathiot, G. Chanfray, H.J. Pirner, Nucl. Phys. A 500, 605 (1989)CrossRefGoogle Scholar
  8. 8.
    R. Friedberg, T.D. Lee, Phys. Rev. D 15, 1694 (1977); Phys. Rev. D 18, 2623 (1978)CrossRefGoogle Scholar
  9. 9.
    R. Dick, L.P. Fulcher, Eur. Phys. J. C 9, 271 (1999); R. Dick, Eur. Phys. J. C 6, 701 (1999)CrossRefGoogle Scholar
  10. 10.
    G. Mack, Nucl. Phys. B 235, 197 (1984)CrossRefGoogle Scholar
  11. 11.
    H. Arodź, H.J. Pirner, Acta Phys. Pol. B 30, 3895 (1999)Google Scholar
  12. 12.
    S. Dalley, B. van de Sande, Phys. Rev. D 56, 7917 (1997)CrossRefGoogle Scholar
  13. 13.
    M. Ślusarczyk, A. Wereszczyński, Eur. Phys. J. C 23, 145 (2002); Acta Phys. Pol. B 32, 2911 (2001); Eur. Phys. J. C 28, 151 (2003); Eur. Phys. J. C 30, 537 (2003)CrossRefGoogle Scholar
  14. 14.
    R. Dick, Phys. Lett. B 397, 193 (1996); R. Dick, Phys. Lett. B 409, 321 (1997)CrossRefGoogle Scholar
  15. 15.
    M. Chabab, R. Markazi, E.H. Saidi, Eur. Phys. J. C 13, 543 (2000); M. Chabab, L. Sanhaji, hep-th/0311096CrossRefGoogle Scholar
  16. 16.
    D. Bazeia et al. , hep-th/0210289; Mod. Phys. Lett. A 17, 1945 (2002)Google Scholar
  17. 17.
    L. Motyka, K. Zalewski, Z. Phys. C 69, 342 (1996); K. Zalewski, Acta Phys. Pol. B 29, 2535 (1998)CrossRefGoogle Scholar
  18. 18.
    A. Martin, Phys. Lett. B 100, 511 (1981)CrossRefGoogle Scholar
  19. 19.
    A.V. Nesterenko, hep-ph/0307283; hep-ph/0305091; hep-ph/0308288Google Scholar
  20. 20.
    T.T. Wu, C.N. Yang, in Properties of Matter Under Unusual Conditions, edited by H. Mark, S. Fernbach (Interscience, New York, 1969)Google Scholar
  21. 21.
    F.E. Close, A. Kirk, Eur. Phys. J. C 21, 531 (2001); UKQCD Collaboration (A. Hart et al. ), Phys. Rev. D 65, 034502 (2002); N. Ishii, M. Sugunuma, H. Matsufuru, Phys. Rev. D 66, 094506 (2002)Google Scholar
  22. 22.
    T. Burch, K. Orginos, D. Toussaint, Phys. Rev. D 64, 074505 (2001); Nucl. Phys. Proc. Suppl. 106, 382 (2002); K.J. Juge, J. Kuti, C. Morningstar, nucl-th/0307116; C. Michael, hep-ph/0308293CrossRefGoogle Scholar
  23. 23.
    T.H.R. Skyrme, Nucl. Phys. 31, 556 (1961)Google Scholar
  24. 24.
    Y.M. Cho, Phys. Rev. D 21, 1080 (1980); Phys. Rev. D 23, 2415 (1981)CrossRefGoogle Scholar
  25. 25.
    J. Hietarinta, P. Salo, Phys. Lett. B 451, 60 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 79, 363 (1997); Phys. Rev. Lett. 81, 4798 (1998)CrossRefGoogle Scholar
  27. 27.
    Y. Nambu, Phys. Rev. D 10, 4262 (1974); S. Mandelstam, Phys. Rep. C 23, 245 (1976); A. Polyakov, Nucl. Phys. B 120, 429 (1977); G. ‘t Hooft, Nucl. Phys. B 190, 455 (1981)CrossRefGoogle Scholar
  28. 28.
    L. Dittmann, T. Heinzl, A. Wipf, Nucl. Phys. (Proc. Suppl.) B 106, 649 (2002); Nucl. Phys. (Proc. Suppl.) B 108, 63 (2002)CrossRefGoogle Scholar
  29. 29.
    L. Faddeev, A.J. Niemi, Phys. Lett. B 525, 195 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    J. Sánchez-Guillén, Phys. Lett. B 548, 252 (2002); Erratum Phys. Lett. B 550, 220 (2002)CrossRefGoogle Scholar
  31. 31.
    D. Bazeia, F.A. Brito, W. Freire, R.F. Ribeiro, hep-th/0311160Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations