Advertisement

The evolution of the universe from non-compact Kaluza-Klein theory

  • J. E. Madriz AguilarEmail author
  • M. Bellini
theoretical physics

Abstract.

We develop a 5D mechanism, inspired by Campbell’s theorem, to explain the (neutral scalar field governed) evolution of the universe from an initially inflationary expansion that has a change of phase towards a decelerated expansion and thereafter evolves towards the present day observed accelerated (quintessential) expansion.

Keywords

Field Theory Elementary Particle Quantum Field Theory Scalar Field Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Dreitlein, Phys. Rev. Lett. 33, 1243 (1974)CrossRefGoogle Scholar
  2. 2.
    A. Guth, Phys. Rev. D 23, 347 (1981)CrossRefGoogle Scholar
  3. 3.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988); P.J.E. Peebles, B. Ratra, Ap. J. Lett. 325, L17 (1988); R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)CrossRefGoogle Scholar
  4. 4.
    T.D. Saini, S. Raychaudhurg, V. Shani, A.A. Starobinsky, Phys. Rev. Lett. 85, 1162 (2000)CrossRefGoogle Scholar
  5. 5.
    J.M. Overduin, P.S. Wesson, Phys. Rep. 283, 303 (1997)CrossRefGoogle Scholar
  6. 6.
    P.S. Wesson, J. Ponce de Leon, J. Math. Phys. 33, 3883 (1992); P.S. Wesson, Mod. Phys. Lett. A 7, 921 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    P.S. Wesson, Astrophys. J. 394, 19 (1992)CrossRefGoogle Scholar
  8. 8.
    A.P. Billyard, P.S. Wesson, Gen. Rel. Grav. 28, 129 (1996)zbMATHGoogle Scholar
  9. 9.
    J.E. Lidsey, C. Romero, R. Tavakol, S. Rippl, Class. Quant. Grav. 14, 865 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    B. Mashhoon, H. Liu, P.S. Wesson, Phys. Lett. B 331, 305 (1994)CrossRefGoogle Scholar
  11. 11.
    M. Bellini, Nucl. Phys. B 604, 441 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    I. Zlatev, Li-Min Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)CrossRefGoogle Scholar
  13. 13.
    D.S. Ledesma, M. Bellini, Phys. Lett. B 581, 1 (2004)Google Scholar
  14. 14.
    J.E. Madriz Aguilar, M. Bellini, Phys. Lett. B 596, 116 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Review of Particle Physics, Phys. Rev. D 66, 010001-170 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Bellini, H. Casini, R. Montemayor, P. Sisterna, Phys. Rev. D 54, 7172 (1996)CrossRefGoogle Scholar
  17. 17.
    A. Davidson, D. Owen, Phys. Lett. B 177, 77 (1986)CrossRefGoogle Scholar
  18. 18.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    D.N. Spergel, L. Verde, H.V. Peiris et al., Ap. J. Suppl. 148, 175 (2003)CrossRefGoogle Scholar
  20. 20.
    D.N. Spergel et al. , Astrophys. J. Suppl. 148, 175 (2003)CrossRefGoogle Scholar
  21. 21.
    J. Ponce de Leon, Mod. Phys. Lett. A 16, 2291 (2001)CrossRefGoogle Scholar
  22. 22.
    J. Ponce de Leon, Int. J. Mod. Phys. D 11, 1355 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Instituto de Física y Matemáticas, AP: 2-82Universidad Michoacana de San Nicolás de HidalgoMorelia, MichoacánMéxico
  2. 2.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata and Consejo Nacional de Ciencia y Tecnología (CONICET)Mar del PlataArgentina

Personalised recommendations