Advertisement

The volume source technique for flavor singlets: a second look

  • F. FarchioniEmail author
  • G. Münster
  • R. Peetz
theoretical physics

Abstract.

We reconsider the volume source technique for the determination of flavor singlet quantities on the lattice. We point out a difficulty arising in the case of fermions in real representations of the gauge group and propose an improved version of the method (IVST) based on random gauge transformations of the background configuration. We compare the performance of IVST with the method based on stochastic estimators (SET). We consider the case of the N = 1 supersymmetric Yang-Mills theory, where just one fermionic flavor is present, the gluino in the adjoint representation, and only flavor singlet states are possible. This work is part of an inclusive analysis of the spectrum of the lightest particles of the theory, based on the simulation of the model on a \(16^3\cdot32\) lattice with dynamical gluinos in the Wilson scheme.

Keywords

Field Theory Elementary Particle Quantum Field Theory Gauge Group Gauge Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Curci, G. Veneziano, Nucl. Phys. B 292, 555 (1987)CrossRefGoogle Scholar
  2. 2.
    G. Veneziano, S. Yankielowicz, Phys. Lett. B 113, 231 (1982)CrossRefGoogle Scholar
  3. 3.
    G.R. Farrar, G. Gabadadze, M. Schwetz, Phys. Rev. D 58, 015009 (1998)CrossRefGoogle Scholar
  4. 4.
    K. Schilling, H. Neff, T. Lippert, hep-lat/0401005Google Scholar
  5. 5.
    Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, A. Ukawa, Phys. Rev. Lett. 72, 3448 (1994)CrossRefGoogle Scholar
  6. 6.
    S.J. Dong, K.F. Liu, Nucl. Phys. Proc. Suppl. 26, 353 (1992); Phys. Lett. B 328, 130 (1994)CrossRefGoogle Scholar
  7. 7.
    I. Montvay, Int. J. Mod. Phys. A 17, 2377 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    I. Campos, A. Feo, R. Kirchner, S. Luckmann, I. Montvay, G. Münster, K. Spanderen, J. Westphalen, Eur. Phys. J. C 11, 507 (1999)CrossRefGoogle Scholar
  9. 9.
    R. Peetz, Ph.D. Thesis, University of Münster, 2003Google Scholar
  10. 10.
    F. Farchioni, R. Peetz, Eur. Phys. J. C (in press), hep-lat/0407036Google Scholar
  11. 11.
    F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster, A. Vladikas, Eur. Phys. J. C 23, 719 (2002)Google Scholar
  12. 12.
    J. Viehoff et al. [SESAM Collaboration], Nucl. Phys. Proc. Suppl. 63, 269 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität MünsterMünsterGermany

Personalised recommendations