Advertisement

Stress-energy tensor for parallel plate on background of conformally flat brane-world geometries and cosmological constant problem

  • M. R. SetareEmail author
theoretical physics

Abstract.

In this paper, we calculate the stress-energy tensor for a quantized massless conformally coupled scalar field with a background of conformally flat brane-world geometries, where the scalar field satisfies Robin boundary conditions on two parallel plates. In the general case of Robin boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor. Further the surface energy per unit area is obtained. As an application of the general formulae we have considered the important special case of the AdS4 + 1 bulk; moreover the application to the Randall-Sundrum scenario is discussed. In this specific example for a certain choice of Robin coefficients, one could make the effective cosmological constant vanish.

Keywords

Boundary Condition Field Theory Surface Energy Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989); S.E. Rugh, H. Zinkernagel, Stud. Hist. Philos. Mod. Phys. 33, 663 (2002); N. Straumann, astro-ph/0203330; A.D. Dolgov, hep-ph/0203245; T. Padmanabhan, hep-th/0212290, to appear in Physics Reports; U. Ellwanger, hep-ph/0203252CrossRefMathSciNetGoogle Scholar
  2. 2.
    S.M. Carroll, astro-ph/0004075 v2Google Scholar
  3. 3.
    V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)CrossRefGoogle Scholar
  4. 4.
    S. Kachru, M. Schultz, E. Silverstein, Phys. Rev. D 62, 045021 (2000)CrossRefGoogle Scholar
  5. 5.
    P. Binetruy, C. Charmousis, S.C. Davis, J. Dufaux, Phys. Lett. B 544, 183 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    S. Forste, Z. Lalak, S. Lavignace, H.P. Nilles, JHEP 0009, 034 (2000)Google Scholar
  7. 7.
    C. Csaki, J. Erlich, C. Grojean, T. Hollowood, Nucl. Phys. B 584, 359 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    C. Csaki, J. Erlich, C. Grojean, Nucl. Phys. B 604, 312 (2001); Gen. Rel. Grav. 33, 1921 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    J.E. Kim, B. Kyae, H.M. Lee, Phys. Rev. Lett. 86, 4223 (2001)CrossRefGoogle Scholar
  10. 10.
    Z. Chang, S.X. Chen, X.B. Huang, H.B. Wen, hep-th/0212310Google Scholar
  11. 11.
    K.S. Choi, J.E. Kim, H.M. Lee, J. Kor. Phys. Soc. 40, 207 (2002)Google Scholar
  12. 12.
    K. Ghoroku, M. Yahiro, hep-th/0206128 v3Google Scholar
  13. 13.
    U. Guenther, P. Moniz, A. Zhuk, Phys. Rev. D 68, 044010 (2003)CrossRefGoogle Scholar
  14. 14.
    S. Nojiri, S. Odintsov, hep-th/0303011Google Scholar
  15. 15.
    J.E. Kim, B. Kyae, Q. Shafi, hep-th/0305239Google Scholar
  16. 16.
    E. Flanagan, N. Jones, H. Stoica, S.-H. Henry Tye, I. Wasserman, Phys. Rev. D 64, 045007 (2001)CrossRefGoogle Scholar
  17. 17.
    P. Binetruy, C. Deffayet, U. Ellwanger, D. Langlois, Phys. Lett. B 477, 285 (2000)CrossRefGoogle Scholar
  18. 18.
    S. Forste, Z. Lalak, S. Lavignace, H.P. Nilles. Phys. Lett. B 481, 360 (2000)CrossRefGoogle Scholar
  19. 19.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    M.R. Setare, R. Mansouri, Class. Quantum Grav. 18, 2695 (2001)Google Scholar
  21. 21.
    A.A. Saharian, M.R. Setare, Phys. Lett. B 552, 119 (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    M.R. Setare, A.A. Saharian, Int. J. Mod. Phys. A 16, 1463 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    M. Fabinger, P. Horava, Nucl. Phys. B 580, 243 (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    J. Garriga, O. Pujolas, T. Tanaka, Nucl. Phys. B 605, 192 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    S. Mukohyama, Phys. Rev. D 63, 044008 (2001)CrossRefGoogle Scholar
  26. 26.
    J. Garriga, O. Pujolas, T. Tanaka, Nucl. Phys. B 655, 127 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    G. Curio, A. Klemm, D. Luest, S. Theisen, Nucl. Phys. B 609, 3 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    W. Naylor, M. Sasaki, Phys. Lett. B 542, 289 (2002)CrossRefzbMATHGoogle Scholar
  29. 29.
    A. Romeo, A.A. Saharian, J. Phys. A Math. Gen. 35, 1297 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    A.A. Saharian, Phys. Rev. D 63, 125007 (2001)CrossRefGoogle Scholar
  31. 31.
    A. Romeo, A.A. Saharian, Phys. Rev. D 63, 105019 (2001)CrossRefGoogle Scholar
  32. 32.
    D.V. Vassilevich, Nucl. Phys. B 563, 603 (1999)CrossRefzbMATHGoogle Scholar
  33. 33.
    P.B. Gilkey, K. Kirsten, D.V. Vassilevich, Nucl. Phys. B 601, 125 (2001)CrossRefzbMATHGoogle Scholar
  34. 34.
    D. Deutsch, P. Candelas, Phys. Rev. D 20, 3063 (1979)CrossRefGoogle Scholar
  35. 35.
    S.A. Fulling, J. Phys. A 36, 6529 (2003); N. Graham, K.D. Olum, Phys. Rev. D 67, 085014 (2003); K.D. Olum, N. Graham, Phys. Lett. B 554, 175 (2003); K.A. Milton, J. Phys. A 37, 6391 (2004); A 37, R209 (2004)Google Scholar
  36. 36.
    N.D. Birrel, P.C.W. Davies, Quantum fields in curved space (Cambridge University Press, Cambridge 1982)Google Scholar
  37. 37.
    T. Gherghetta, A. Pomarol, Nucl. Phys. B 586, 141 (2000)CrossRefzbMATHGoogle Scholar
  38. 38.
    A. Knapman, D.J. Toms, hep-th/0309176Google Scholar
  39. 39.
    A.A. Saharian, hep-th/0312092Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Physics Dept. Inst. for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations