B and B s decay constants from moments of finite energy sum rules in QCD

  • F. Bodí-Esteban
  • J. BordesEmail author
  • J. Peñarrocha
theoretical physics


We use an appropriate combination of moments of finite energy sum rules in QCD in order to compute the B q -meson decay constants f B and \(f_{B_s}\). We perform the calculation using a two-loop computation of the imaginary part of the pseudoscalar two point function in terms of the running bottom quark mass. The results are stable against the so-called QCD duality threshold, and they are in agreement with the estimates obtained from Borel transform QCD sum rules and lattice computations.


Field Theory Elementary Particle Quantum Field Theory Imaginary Part Quark Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979); B 147, 385 (1979); B 147, 448 (1979)CrossRefGoogle Scholar
  2. 2.
    L.J. Reinders, Phys. Rev. D 38, 947 (1988); S. Narison, QCD spectral sum rules, World Scientific lecture notes in Physics, vol. 26 (Singapore, 1989)CrossRefGoogle Scholar
  3. 3.
    T.M. Aliev, V.L. Eletsky, Sov. J. Nucl. Phys. 38, 936 (1983); Yad. Fiz. 38, 1537 (1983)Google Scholar
  4. 4.
    M. Jamin, O. Lange, Phys. Rev. D 65, 056003 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Narison, Phys. Lett. B 520, 115 (2001)CrossRefGoogle Scholar
  6. 6.
    C.A. Dominguez, N. Paver, Phys. Lett. B 197, 423 (1987)CrossRefGoogle Scholar
  7. 7.
    P. Colangelo (INFN, Bari), A. Khodjamirian, Boris Ioffe Festschrift At the Frontier of Particle Physics, Handbook of QCD, vol. 3, edited by M. Shifman (World Scientific, Singapore 2001)Google Scholar
  8. 8.
    A. Abada et al. (APE Collaboration), Nucl. Phys. (Proc. Suppl.) B 83, 268 (2000)Google Scholar
  9. 9.
    K.C. Bowler (UKQCD Collaboration), Nucl. Phys. B 619, 507 (2001)CrossRefGoogle Scholar
  10. 10.
    K.G. Chetyrkin, M. Steinhauser, Phys. Lett. B 502, 104 (2001); Eur. Phys. J. C 21, 319 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    K.G. Chetyrkin, M. Steinhauser, Nucl. Phys. B 573, 617 (2000)CrossRefGoogle Scholar
  12. 12.
    J.A.M. Vermaseren, S.A. Larin, T. van Ritbergen, Phys. Lett. B 405, 327 (1997)CrossRefGoogle Scholar
  13. 13.
    J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 88, 101802 (2002)CrossRefGoogle Scholar
  14. 14.
    J. Peñarrocha, K. Schilcher. Phys. Lett. B 515, 291 (2001)CrossRefGoogle Scholar
  15. 15.
    J. Bordes, J. Peñarrocha, K. Schilcher. Phys. Lett. B 562, 81 (2003)CrossRefGoogle Scholar
  16. 16.
    G. Rodrigo, A. Pich, A. Santamaria, Phys. Lett. B 424, 367 (1998)CrossRefGoogle Scholar
  17. 17.
    S. Bethke, J. Phys. G 26, R27 (2000)Google Scholar
  18. 18.
    K. Hagiwara et al. (PDG), Phys. Rev. D 66, 010001 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Departamento de Física Teórica-IFICUniversitat de ValenciaBurjassot-ValenciaSpain

Personalised recommendations