Gauge theories on the \(\kappa\)-Minkowski spacetime

theoretical physics

Abstract.

This study of gauge field theories on \(\kappa\)-deformed Minkowski spacetime extends previous work on field theories on this example of a non-commutative spacetime. We construct deformed gauge theories for arbitrary compact Lie groups using the concept of enveloping algebra-valued gauge transformations and the Seiberg-Witten formalism. Derivative-valued gauge fields lead to field strength tensors as the sum of curvature- and torsion-like terms. We construct the Lagrangians explicitly to first order in the deformation parameter. This is the first example of a gauge theory that possesses a deformed Lorentz covariance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    R.J. Szabo, Phys. Rept. 378, 207 (2003)CrossRefMATHGoogle Scholar
  3. 3.
    J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994)CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Eur. Phys. J. C 31, 129 (2003)MathSciNetGoogle Scholar
  7. 7.
    N. Seiberg, E. Witten, JHEP 9909, 032 (1999)Google Scholar
  8. 8.
    J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000)CrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Jurčo, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 17, 521 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Jurčo, L. Möller, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 21, 383 (2001)CrossRefMathSciNetGoogle Scholar
  11. 11.
    X. Calmet, B. Jurčo, P. Schupp, J. Wess, M. Wohlgenannt, Eur. Phys. J. C 23, 363 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Kontsevich, Deformation quantization of Poisson manifolds I, q-alg/9709040Google Scholar
  13. 13.
    D. Brace, B.L. Cerchiai, A.F. Pasqua, U. Varadarajan, B. Zumino, JHEP 0106, 047 (2001)Google Scholar
  14. 14.
    M. Picariello, A. Quadri, S.P. Sorella, JHEP 0201, 045 (2002)CrossRefGoogle Scholar
  15. 15.
    G. Barnich, F. Brandt, M. Grigoriev, Nucl. Phys. B 677, 503 (2004)CrossRefMATHGoogle Scholar
  16. 16.
    F. Meyer, H. Steinacker, Gauge Field Theory on the E q(2)-covariant Plane, accepted for publication in Int. J. Mod. Phys. A, hep-th/0309053Google Scholar
  17. 17.
    P. Aschieri, B. Jurčo, P. Schupp, J. Wess, Nucl. Phys. B 651, 45 (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • M. Dimitrijević
    • 1
    • 2
    • 3
  • F. Meyer
    • 1
    • 2
  • L. Möller
    • 1
    • 2
  • J. Wess
    • 1
    • 2
  1. 1.Fakultät für PhysikUniversität MünchenMünchenGermany
  2. 2.Max-Planck-Institut für PhysikMünchenGermany
  3. 3.Faculty of PhysicsUniversity of BelgradeBeogradSerbia and Montenegro

Personalised recommendations