Advertisement

On the classical dynamics of charges in non-commutative QED

  • A. H. FatollahiEmail author
  • H. Mohammadzadeh
theoretical physics

Abstract.

Following Wong’s approach to formulating the classical dynamics of charged particles in non-Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure, it is observed that the definition of the mechanical momenta should be modified. The derived equations of motion manifest the previous statement about the dipole behavior of the charges in non-commutative space.

Keywords

Gauge Theory Charged Particle Classical Equation Previous Statement Classical Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Snyder, Phys. Rev. 71, 38 (1947); 72, 68 (1947)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Connes, Non-commutative geometry (Academic Press 1994)Google Scholar
  3. 3.
    A. Connes, J. Lott, Nucl. Phys. (Proc. Supp.) B 18, 29 (1990); A.H. Chamseddine, J. Frohlich, Phys. Rev. D 50, 2893 (1994), hep-th/9304023; A.H. Chamseddine, G. Felder, J. Frohlich, Nucl. Phys. B 395, 672 (1993), hep-ph/9209224CrossRefGoogle Scholar
  4. 4.
    E. Witten, Nucl. Phys. B 460, 335 (1996), hep-th/9510135CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    N. Seiberg, E. Witten, JHEP 9909, 032 (1999), hep-th/9908142Google Scholar
  6. 6.
    A. Connes, M.R. Douglas, A. Schwarz, JHEP 9802, 003 (1998), hep-th/9711162; M.R. Douglas, C. Hull, JHEP 9802, 008 (1998), hep-th/9711165Google Scholar
  7. 7.
    H. Arfaei, M.M. Sheikh-Jabbari, Nucl. Phys. B 526, 278 (1998), hep-th/9709054CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001), hep-th/0106048CrossRefMathSciNetGoogle Scholar
  9. 9.
    S.K. Wong, Nuovo Cim. A 65, 689 (1970)Google Scholar
  10. 10.
    M. Carmeli, K. Huleihil, E. Leibowitz, Gauge fields: classification and equations of motion (World Scientific 1989), Chap. 7Google Scholar
  11. 11.
    M.M. Sheikh-Jabbari, Phys. Lett. B 455, 129 (1999), hep-th/9901080CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716 (2001), hep-th/0010175CrossRefGoogle Scholar
  13. 13.
    I.F. Riad, M.M. Sheikh-Jabbari, JHEP 0008, 045 (2000), hep-th/0008132Google Scholar
  14. 14.
    K. Dasgupta, M.M. Sheikh-Jabbari, JHEP 0202, 002 (2002), hep-th/0112064CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute for Advanced Studies in Basic Sciences (IASBS)Zanjan 159Iran

Personalised recommendations