Advertisement

Bose-Einstein correlations for Lévy stable source distributions

  • T. CsörgőEmail author
  • S. Hegyi
  • W. A. Zajc
theoretical physics

Abstract.

The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability \(0 < \alpha \le 2\), the peak has a stretched exponential shape. The Gaussian form corresponds then to the special case of \(\alpha = 2\). We give examples for the Bose-Einstein correlation functions for univariate as well as multivariate stable distributions, and we check the model against two-particle correlation data.

Keywords

Correlation Function Correlation Data Stable Distribution Source Distribution Gaussian Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Csörgő, B. Lörstad, J. Zimányi, Z. Phys. C 71, 491 (1996) hep-ph/9411307CrossRefGoogle Scholar
  2. 2.
    S.E. Vance, T. Csörgő, D. Kharzeev, Phys. Rev. Lett. 81, 2205 (1998) nucl-th/9802074CrossRefGoogle Scholar
  3. 3.
    A. Ster, T. Csörgő, PRHEP - hep 2001, 241 (2001) hep-ph/0112065; M. Csanád, T. Csörgő, B. Lörstad, A. Ster nucl-th/0403074, J. Phys. G, in pressGoogle Scholar
  4. 4.
    T. Csörgő, B. Lörstad, J. Schmid-Sorensen, A. Ster, Eur. Phys. J. C 9, 275 (1999) hep-ph/9812422CrossRefGoogle Scholar
  5. 5.
    T. Csörgő, Heavy Ion Phys. 15, 1 (2002) hep-ph/0001233Google Scholar
  6. 6.
    W. Kittel, Acta Phys. Polon. B 32, 3927 (2001) hep-ph/0110088Google Scholar
  7. 7.
    R. Hanbury Brown, R.Q. Twiss, Phil. Mag. 45, 663 (1954)Google Scholar
  8. 8.
    R. Hanbury Brown, R.Q. Twiss, Nature 178, 1046 (1956)Google Scholar
  9. 9.
    G. Goldhaber, S. Goldhaber, W.Y. Lee, A. Pais, Phys. Rev. 120, 300 (1960)CrossRefGoogle Scholar
  10. 10.
    T. Csörgő, S. Hegyi, Phys. Lett. B 489, 15 (2000)CrossRefGoogle Scholar
  11. 11.
    D. Miskowiec, S. Voloshin, Heavy Ion Phys. 9, 283 (1999) nucl-ex/9704006Google Scholar
  12. 12.
    U.W. Heinz, B.V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999) nucl-th/9902020CrossRefGoogle Scholar
  13. 13.
    U.A. Wiedemann, U.W. Heinz, Phys. Rept. 319, 145 (1999) nucl-th/9901094CrossRefGoogle Scholar
  14. 14.
    R.M. Weiner, Phys. Rept. 327, 249 (2000) hep-ph/9904389CrossRefGoogle Scholar
  15. 15.
    T. Csörgő, J. Zimányi, Nucl. Phys. A 517, 588 (1990)CrossRefGoogle Scholar
  16. 16.
    T. Csörgő, B. Lörstad, Phys. Rev. C 54, 1390 (1996) hep-ph/9509213CrossRefGoogle Scholar
  17. 17.
    S. Nickerson, T. Csörgő, D. Kiang, Phys. Rev. C 57, 3251 (1998) nucl-th/9712059CrossRefGoogle Scholar
  18. 18.
    D. Hardtke, S.A. Voloshin, Phys. Rev. C 61, 024905 (2000) nucl-th/9906033CrossRefGoogle Scholar
  19. 19.
    F.B. Yano, S.E. Koonin, Phys. Lett. B 78, 556 (1978)CrossRefGoogle Scholar
  20. 20.
    V.V. Uchaikin, V.M. Zolotarev, Chance and stability, stable distributions and their applications (VSP Science 1999), ISBN: 90-6764-301-7Google Scholar
  21. 21.
    V.M. Zolotarev, One-dimensional Stable Distributions, Am. Math. Soc. Transl. of Math. Monographs, vol. 65, Providence, R.I. (Transl. of the 1983 original in Russian)Google Scholar
  22. 22.
    J.P. Nolan, Stable Distributions: Models for Heavy Tailed Data http:/ academic2.american.edu jpnolan stable CHAP1.PDFGoogle Scholar
  23. 23.
    T. Csörgő, S. Hegyi, W. Kittel, manuscript in preparationGoogle Scholar
  24. 24.
    J.P. Nolan, Fitting Data and Assessing Goodness-of-fit with Stable Distributions, Contribution ot the Heavy Tails Conference, http:/ academic2.american.edu jpnolan stable DataAnalysis.psGoogle Scholar
  25. 25.
    G. Gustafson, A. Nilsson, Nucl. Phys. B 355, 106 (1991)CrossRefGoogle Scholar
  26. 26.
    Y.L. Dokshitzer, I.M. Dremin, Nucl. Phys. B 402, 139 (1993)CrossRefGoogle Scholar
  27. 27.
    E.A. De Wolf, I.M. Dremin, W. Kittel, Phys. Rept. 270, 1 (1996) hep-ph/9508325Google Scholar
  28. 28.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rept. 97, 31 (1983)CrossRefGoogle Scholar
  29. 29.
    A. Bialas, Acta Phys. Polon. B 23, 561 (1992)Google Scholar
  30. 30.
    O.V. Utyuzh, G. Wilk, Z. Wlodarczyk, Phys. Rev. D 61, 034007 (2000)CrossRefGoogle Scholar
  31. 31.
    U.W. Heinz, Q.H. Zhang, Phys. Rev. C 56, 426 (1997) nucl-th/9701023CrossRefGoogle Scholar
  32. 32.
    H. Heiselberg, A.P. Vischer, nucl-th/9707036Google Scholar
  33. 33.
    V.M. Zolotarev, in Contributions to probability (Academic Press, New York 1981), pp. 283-305Google Scholar
  34. 34.
    H. Abdul-Hamid, J.P. Nolan, J. Multivariate Analysis 67, 80 (1998); J.P. Nolan, B. Rajput, Commun. Statistics-Simula. 24, 551 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    J.P. Nolan, a program to calculate multivariate stable densities; http:/ academic2.american.edu jpnolan stable mvstable.exeGoogle Scholar
  36. 36.
    W.R. Schneider, Stable distributions: Fox function representation and generalization, in Stochastic Processes in Classical and Quantum Systems (Lecture Notes in Physics, Springer Verlag, Berlin 1986), edited by S. Albeverio, G. Casati, D. Merlini, Vol. 262, pp. 497-511Google Scholar
  37. 37.
    W.R. Schneider, Generalized one-sided stable distributions Proceedings of the second BiBoS Symposium, in Stochastic Processes - Mathematics and Physics II. (Lecture Notes in Mathematics, Springer Verlag, Berlin 1986), edited by S. Albeverio, Ph. Blanchard, L. Streit, Vol. 1250, pp. 269-287Google Scholar
  38. 38.
    T. Csörgő, B. Lörstad, Nucl. Phys. A 590, 465C (1995) hep-ph/9503494CrossRefGoogle Scholar
  39. 39.
    J.P. Nolan, Multivariate stable distributions: approximation, estimation, simulation and identification, http:/ academic2.american.edu jpnolan stable overview.psGoogle Scholar
  40. 40.
    S.V. Akkelin, T. Csörgő, B. Lukács, Y.M. Sinyukov, M. Weiner, Phys. Lett. B 505, 64 (2001) hep-ph/0012127CrossRefGoogle Scholar
  41. 41.
    T. Csörgő, S.V. Akkelin, Y. Hama, B. Lukács, Y.M. Sinyukov, hep-ph/0108067Google Scholar
  42. 42.
    T. Csörgő, hep-ph/0111139Google Scholar
  43. 43.
    S. Pratt, T. Csörgő, J. Zimányi, Phys. Rev. C 42, 2646 (1990)CrossRefGoogle Scholar
  44. 44.
    G.F. Bertsch, Nucl. Phys. A 498, 173C (1989)CrossRefGoogle Scholar
  45. 45.
    S. Pratt, Phys. Rev. Lett. 53, 1219 (1984)CrossRefGoogle Scholar
  46. 46.
    T. Csörgő, S. Pratt, KFKI-1991-28/A, p. 75Google Scholar
  47. 47.
    N.M. Agababian et al. [EHS/NA22 Collaboration], Z. Phys. C 59, 405 (1993)Google Scholar
  48. 48.
    N. Neumeister et al. [UA1-Minimum Bias-Collaboration], Z. Phys. C 60, 633 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.KFKI RMKI1525 Budapest 114Hungary
  2. 2.Dept. PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations