Advertisement

Strongest gravitational waves from neutrino oscillationsat supernova core bounce

  • H. J. Mosquera CuestaEmail author
  • K. Fiuza
theoretical physics

Abstract.

Resonant active-to-active (\(\nu_{\mathrm {a}} \rightarrow \nu_{\mathrm {a}}\)), as well as active-to-sterile (\(\nu_{\mathrm {a}} \rightarrow \nu_{\mathrm {s}}\)) neutrino (\(\nu\)) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (\(\bar{\nu}\)) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target \(\nu\) species, the large mass-squared difference between the species (\(\nu_{\mathrm {a}} \rightarrow \nu_{\mathrm {s}}\)) implies a huge amount of energy to be given off as gravitational waves (\(L_{\mathrm{GW}} \sim 10^{49}\) erg s-1), due to anisotropic but coherent \(\nu\) flow over the oscillation length. This asymmetric \(\nu\)-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter \(\alpha \sim 0.1\)-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino \(\nu_{\mathrm {s}}\) that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al. , Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from \(\nu\) diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies.

Keywords

Dark Matter Neutron Star Gravitational Wave Neutrino Oscillation Sterile Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.K. Akhmedov et al. , Nuc. Phys. B 542, 3 (1999)CrossRefGoogle Scholar
  2. 2.
    M. Aglietta et al. , Nuovo Cim. C 12, 75 (1989)Google Scholar
  3. 3.
    W.D. Arnett, J. Rosner, Phys. Rev. Lett. 58, 1906 (1987)CrossRefGoogle Scholar
  4. 4.
    S.M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43, 1 (1999)CrossRefGoogle Scholar
  5. 5.
    R. Buras, M. Rampp, H.-Th. Janka, K. Kifonidis, Phys. Rev. Lett. 90, 241101 (2003); astro-ph/0303171 (v1)CrossRefGoogle Scholar
  6. 6.
    A. Burrows, J. Lattimer, Astrophys. J. 251, 325 (1986)CrossRefGoogle Scholar
  7. 7.
    A. Burrows, J. Hayes, Phys. Rev. Lett. 76, 352 (1996)CrossRefGoogle Scholar
  8. 8.
    A. Burrows, J. Hayes, B.A. Fryxell, Ap. J. 450, 830 (1995)CrossRefGoogle Scholar
  9. 9.
    R. Cowsik, Phys. Rev. D 37, 1685 (1988)CrossRefGoogle Scholar
  10. 10.
    A.S. Dighe, A.Yu. Smirnov, Phys. Rev. D 62, 033007 (2000)CrossRefGoogle Scholar
  11. 11.
    K. Eguchi et al. [KamLAND Collaboration], Phys. Rev. Lett. 90, 021802 (2003)CrossRefGoogle Scholar
  12. 12.
    R.I. Epstein, MNRAS 188, 305 (1978)Google Scholar
  13. 13.
    D. Fischer, Astron. Astrophys. 186, L11 (1987)Google Scholar
  14. 14.
    Y. Fukuda et al. , Phys. Rev. Lett. 81, 1562 (1998)CrossRefGoogle Scholar
  15. 15.
    G.M. Fuller, A. Kusenko, I. Mocioiu, S. Pascoli, Phys. Rev. D 68, 103002 (2003)CrossRefGoogle Scholar
  16. 16.
    W. Grimus, Neutrino Physics - Theory, report hep-ph/0307149 (v2)Google Scholar
  17. 17.
    S. Hannestad, hep-ph/0302340 (v1)Google Scholar
  18. 18.
    M. Harwit et al. , Nature 328, 503 (1987)CrossRefGoogle Scholar
  19. 19.
    C.J. Horowitz, Phys. Rev. D 65, 043001 (2002)CrossRefGoogle Scholar
  20. 20.
    H.-Th. Janka, K. Kifonidis, M. Rampp, in: Proceedings of the International Workshop on Physics of Neutron Star Interiors (NSI00), Trento, Italy, 19 Jun - 7Jul (2000). Published in Lect. Notes Phys. 578, 333 (2001)Google Scholar
  21. 21.
    A. Kusenko, private communication; astro-ph/9903167Google Scholar
  22. 22.
    A. Kusenko, M. Postma, Phys. Lett. B 545, 238 (2002)CrossRefGoogle Scholar
  23. 23.
    A. Kusenko, G. Segré, Phys. Lett. B 396, 197 (1997); Phys. Rev. D 59, 061302 (1999)CrossRefGoogle Scholar
  24. 24.
    L.C. Loveridge, Phys. Rev. D 69, 024008 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Mayle, J.R. Wilson, D.N. Schramm, Ap. J. 318, 288 (1987)CrossRefGoogle Scholar
  26. 26.
    T.P. Walker, D.N. Schramm, Phys. Lett. B 195, 331 (1987)CrossRefGoogle Scholar
  27. 27.
    S.P. Mikheyev, A.Yu. Smirnov, Yad. Fiz. 42, 1441 (1985); Sov. J. Nucl. Phys. 42, 913 (1985)Google Scholar
  28. 28.
    H.J. Mosquera Cuesta, Phys. Rev. D 65, 061503(R) (2002); Ap. J. 544, L61 (2000)CrossRefGoogle Scholar
  29. 29.
    E. Müller, H.-Th. Janka, Astr. Astr. 317, 140 (1997)Google Scholar
  30. 30.
    H. Nunokawa, Nucl. Phys. Proc. Suppl. 95, 193 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Nunokawa et al. , Phys. Rev. D 56, 1704 (1997)CrossRefGoogle Scholar
  32. 32.
    J. Pantaleone, Phys. Lett. B 287, 128 (1992)CrossRefGoogle Scholar
  33. 33.
    S. Pastor, G.G. Raffelt, Phys. Rev. Lett. 89, 191101 (2002)CrossRefGoogle Scholar
  34. 34.
    A. Pierce, H. Murayama, hep-ph/0302131 (v1) (New neutrino mass constraints based on the Wilkinson Microwave Anisotropy Probe (WMAP))Google Scholar
  35. 35.
    D. Saha, G. Chattopadhyay, Astrophys. Spac. Sc. 178, 209 (1991)Google Scholar
  36. 36.
    S. Samuel, Phys. Rev. D 48, 1462 (1993)CrossRefGoogle Scholar
  37. 37.
    K. Sato, H. Suzuki, Phys. Rev. Lett. 58, 2722 (1987)CrossRefGoogle Scholar
  38. 38.
    H. Spruit, E.S. Phinney, Nature 393, 139 (1998)CrossRefGoogle Scholar
  39. 39.
    I.D. Soares, J. Tiomno, Phys. Rev. D 54, 2808 (1996)CrossRefGoogle Scholar
  40. 40.
    A.Yu. Smirnov, Nuov. Cim. B 117, 1237 (2002)Google Scholar
  41. 41.
    W.G. Unruh, Phys. Rev. Lett. 31, 1265 (1973)CrossRefGoogle Scholar
  42. 42.
    A. Vilenkin, Phys. Rev. Lett. 41, 1575 (1978)CrossRefGoogle Scholar
  43. 43.
    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); Phys. Rev. D 20, 2634 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Centro Brasileiro de Pesquisas FísicasLaboratório de Cosmologia e Física Experimental de Altas EnergiasUrcaBrazil
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Centro Latino-Americano de FísicaFundos, BotafogoBrazil
  4. 4.Instituto de Física - Universidade Federal do Rio Grande do Sul AgronomiaPorto Alegre, RSBrazil

Personalised recommendations