Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap

  • The OPAL Collaboration
experimental physics

Abstract.

Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e + e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Brandt et al. , Phys. Lett. 12, 57 (1964); E. Fahri, Phys. Rev. Lett. 39, 1587 (1977)Google Scholar
  2. 2.
    J.D. Bjorken, Phys. Rev. D 47, 101 (1993)CrossRefGoogle Scholar
  3. 3.
    H1 Collab., T. Ahmed et al. , Nucl. Phys. B 429, 477 (1994); ZEUS Collab., M. Derrick et al. , Phys. Lett. B 332, 228 (1994); ZEUS Collab., M. Derrick et al. , Phys. Lett. B 369, 55 (1996)CrossRefGoogle Scholar
  4. 4.
    D0 Collab., S. Abachi et al. , Phys. Rev. Lett. 72, 2332 (1994); CDF Collab., F. Abe et al. , Phys. Rev. Lett. 74, 855 (1995); D0 Collab., B. Abbott et al. , Phys. Lett. B 440, 189 (1998); CDF Collab., T. Affolder et al. , Phys. Rev. Lett. 85, 4215 (2000)CrossRefGoogle Scholar
  5. 5.
    For a recent review, see A.B. Kaidalov, in M. Shifman, B. Ioffe (eds.), At the frontier of particle physics,, vol. 1 (World Scientific, Singapore, 2001), p. 603, e-Print Archive: hep-ph/0103011; for a discussion of the pomeron in the context of rapidity gaps, see A. Hebecker, Phys. Rep. 331, 1 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Andersson et al. , Phys. Rep. 97, 31 (1983)CrossRefGoogle Scholar
  7. 7.
    G. Gustafson, U. Pettersson, P.M. Zerwas, Phys. Lett. B 209, 90 (1988)CrossRefGoogle Scholar
  8. 8.
    OPAL Collab., G. Abbiendi et al. , Phys. Lett. B 453, 153 (1999); L3 Collab., M. Acciarri et al. , Phys. Lett. B 454, 386 (1999); ALEPH Collab., B. Barate et al. , Eur. Phys. J. C 17, 241 (2000); DELPHI Collab., P. Abreu et al. , Phys. Lett. B 511, 159 (2001)CrossRefGoogle Scholar
  9. 9.
    P. Minkowski, W. Ochs, Phys. Lett. B 485, 139 (2000)CrossRefGoogle Scholar
  10. 10.
    SLD Collab., K. Abe et al. , Phys. Rev. Lett. 76, 4886 (1996)CrossRefGoogle Scholar
  11. 11.
    OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 11, 217 (1999)CrossRefGoogle Scholar
  12. 12.
    OPAL Collab., K. Ahmet et al. , Nucl. Instr. Methods A 305, 275 (1991)Google Scholar
  13. 13.
    P.P. Allport et al. , Nucl. Instr. Methods A 346, 476 (1994)Google Scholar
  14. 14.
    OPAL Collab., G. Alexander et al. , Z. Phys. C 52, 175 (1991)Google Scholar
  15. 15.
    OPAL Collab., K. Ackerstaff et al. , Eur. Phys. J. C 2, 213 (1998); OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 12, 567 (2000)CrossRefGoogle Scholar
  16. 16.
    T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994)CrossRefGoogle Scholar
  17. 17.
    G. Marchesini et al. , Comp. Phys. Comm. 67, 465 (1992)CrossRefGoogle Scholar
  18. 18.
    G. Corcella et al. , JHEP 0101, 010 (2001)Google Scholar
  19. 19.
    L. Lönnblad, Comp. Phys. Comm. 71, 15 (1992)CrossRefGoogle Scholar
  20. 20.
    See, for example, G. Altarelli, Phys. Rep. 81, 1 (1982)CrossRefGoogle Scholar
  21. 21.
    G.C. Fox, S. Wolfram, Nucl. Phys. B 168, 285 (1980)CrossRefGoogle Scholar
  22. 22.
    G. Gustafson, Phys. Lett. B 75, 453 (1986); G. Gustafson, U. Pettersson, Nucl. Phys. B 306, 746 (1988); B. Andersson, G. Gustafson, L. Lönnblad, Nucl. Phys. B 339, 393 (1990)CrossRefGoogle Scholar
  23. 23.
    OPAL Collab., G. Alexander et al. , Z. Phys. C 69, 543 (1996)CrossRefGoogle Scholar
  24. 24.
    ALEPH Collab., R. Barate et al. , Phys. Rep. 294, 1 (1998)CrossRefGoogle Scholar
  25. 25.
    L. Lönnblad, Z. Phys. C 70, 107 (1996)CrossRefGoogle Scholar
  26. 26.
    L. Lönnblad, private communicationGoogle Scholar
  27. 27.
    J. Rathsman, Phys. Lett. B 452, 364 (1999)CrossRefGoogle Scholar
  28. 28.
    G. Gustafson, J. Häkkinen, Z. Phys. C 64, 659 (1994).Google Scholar
  29. 29.
    V.A. Khoze, T. Sjöstrand, Z. Phys. C 62, 281 (1994); Phys. Rev. Lett. 72, 28 (1994)Google Scholar
  30. 30.
    See for example R. Enberg, G. Ingelman, N. Timneanu, J. Phys. G 26, 712 (2000); Phys. Rev. D 64, 114015 (2001)CrossRefGoogle Scholar
  31. 31.
    J. Allison et al. , Nucl. Instr. Methods A 317, 47 (1992)CrossRefGoogle Scholar
  32. 32.
    OPAL Collab., M.Z. Akrawy et al. , Z. Phys. C 47, 505 (1990)Google Scholar
  33. 33.
    S. Catani et al. , Phys. Lett. B 269, 432 (1991)CrossRefGoogle Scholar
  34. 34.
    I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)CrossRefMATHGoogle Scholar
  35. 35.
    DELPHI Collab., P. Abreu et al. , Phys. Lett. B 405, 202 (1997); ALEPH Collab., R. Barate et al. , Phys. Lett. B 434, 437 (1998); OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 18, 447 (2001); SLD Collab., K. Abe Phys. Lett. B 507, 61 (2001)CrossRefGoogle Scholar
  36. 36.
    OPAL Collab., R. Akers et al. , Z. Phys. C 68, 179 (1995)Google Scholar
  37. 37.
    Yu.L. Dokshitzer, V.A. Khoze, S.I. Troyan, Sov. J. Nucl. Phys. 47, 881 (1988)Google Scholar
  38. 38.
    ALEPH Collab., R. Barate et al. , Z. Phys. C 76, 191 (1997); DELPHI Collab., P. Abreu et al. , Phys. Lett. B 449, 383 (1999)CrossRefGoogle Scholar
  39. 39.
    The larger multiplicity of gluon jets relative to quark jets was first observed in OPAL Collab., P.D. Acton et al. , Z. Phys. C 58, 387 (1993)Google Scholar
  40. 40.
    C. Peterson, T.F. Walsh, Phys. Lett. B 91, 455 (1980)CrossRefGoogle Scholar
  41. 41.
    Particle Data Group, K. Hagiwara et al. , Phys. Rev. D 66, 010001 (2002)CrossRefGoogle Scholar
  42. 42.
    See, for example, C. Amsler, Phys. Lett. B 541, 22 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • The OPAL Collaboration

There are no affiliations available

Personalised recommendations