Advertisement

Towards UV finite quantum field theoriesfrom non-local field operators

  • S. DenkEmail author
  • V. Putz
  • M. Schweda
  • M. Wohlgenannt
theoretical physics

Abstract.

A non-local toy model whose interaction consists of smeared, non-local field operators is presented. We work out the Feynman rules and propose a power counting formula for arbitrary graphs. Explicit calculations for one loop graphs show that their contribution is finite for sufficient smearing and agree with the power counting formula. UV/IR mixing does not occur.

Keywords

Field Operator Explicit Calculation Feynman Rule Power Counting Arbitrary Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pais, Phys. Rev. 79, 145 (1950)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    H.C. Ohanian, Phys. Rev. D 55, 5140 (1997); 60, 104051 (1999)CrossRefGoogle Scholar
  3. 3.
    Th. Filk, Phys. Lett. B 376, 53 (1996)CrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Minwalla, M. van Raamsdonk, N. Seiberg, JHEP 0002, 020 (2000) [hep-th/9912072]; A. Matusis, L. Susskind, N. Toumbas, JHEP 0012, 002 (2000) [hep-th/0002075]Google Scholar
  5. 5.
    J. Gomis, Th. Mehen, Nucl. Phys. B 591, 265 (2000) [hep-th/0005129]CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Phys. Lett. B 533, 178 (2002) [hep-th/0201222]CrossRefzbMATHGoogle Scholar
  7. 7.
    Y. Liao, K. Sibold, Eur. Phys. J. C 25, 469 (2002) [hep-th/0205269]MathSciNetGoogle Scholar
  8. 8.
    Y. Liao, K. Sibold, Eur. Phys. J. C 25, 479 (2002) [hep-th/0206011]MathSciNetGoogle Scholar
  9. 9.
    H. Bozkaya, P. Fischer, H. Grosse, M. Pitschmann, V. Putz, M. Schweda, R. Wulkenhaar, Eur. Phys. J. C 29, 133 (2003) [hep-th/0209253]zbMATHGoogle Scholar
  10. 10.
    P. Fischer, V. Putz, Eur. Phys. J. C 32, 269 (2004) [hep-th/0306099]Google Scholar
  11. 11.
    S. Denk, M. Schweda, JHEP 0309, 032 (2003) [hep-th/0306101]CrossRefGoogle Scholar
  12. 12.
    M. Chaichian, A. Demichev, P. Prešnajder, Nucl. Phys. B 567, 360 (2000) [hep-th/9812180]CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    S. Cho, R. Hinterding, J. Madore, H. Steinacker, Int. J. Mod. Phys. D 9, 161 (2000) [hep-th/9903239]CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Smailagic, E. Spallucci, J. Phys. A 36, L517 (2003) [hep-th/0308193]Google Scholar
  15. 15.
    R.J. Glauber, Phys. Rev. 131, 2766 (1963)CrossRefGoogle Scholar
  16. 16.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Comm. Math. Phys. 237, 221 (2003) [hep-th/0301100]zbMATHGoogle Scholar
  17. 17.
    P. Nicolini, Vacuum energy momentum tensor in \((2+1)\) NC scalar field theory, hep-th/0401204Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für theoretische PhysikTechnische Universität WienWienAustria

Personalised recommendations