Parity violation in four and higher dimensional spacetime with torsion

  • B. MukhopadhyayaEmail author
  • S. Sen
  • S. SenGupta
  • S. Sur
theoretical physics


The possibility of parity violation in a gravitational theory with torsion is extensively explored in four and higher dimensions. In the former case, we have listed our conclusions on when and whether parity ceases to be conserved, with both two- and three-index antisymmetry of the torsion field. In the latter, the bulk spacetime is assumed to have torsion, and the survival of parity violating terms in the four dimensional effective action is studied, using the compactification schemes proposed by Arkani-Hamed-Dimopoulos-Dvali and Randall-Sundrum. An interesting conclusion is that the torsion-axion duality arising in a stringy scenario via the second rank antisymmetric Kalb-Ramond field leads to conservation of parity in the gravity sector in any dimension. However, parity violating interactions do appear for spin-1/2 fermions in such theories, which can have crucial phenomenological implications.


High Dimension Effective Action Parity Violation Dimensional Spacetime Gravitational Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Mukhopadhyaya, S. SenGupta, Phys. Lett. B 458, 8 (1999)CrossRefGoogle Scholar
  2. 2.
    B. Mukhopadhyaya, S. SenGupta, S. Sur, Mod. Phys. Lett. A 17, 43 (2002)CrossRefGoogle Scholar
  3. 3.
    S. SenGupta, A. Sinha, Phys. Lett. B 514, 109 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Lue, L. Wang, M. Kamionkowski, Phys. Rev. Lett. 83, 1506 (1999); N. Lepora, gr-qc/9812077CrossRefGoogle Scholar
  5. 5.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998); 436, 257 (1998)CrossRefGoogle Scholar
  6. 6.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); 83, 4690 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    B. Mukhopadhyaya, S. Sen, S. SenGupta, Phys. Rev. D 65, 124021 (2002)CrossRefGoogle Scholar
  8. 8.
    B. Mukhopadhyaya, S. Sen, S. SenGupta, Phys. Rev. Lett. 89, 121101 (2002)CrossRefGoogle Scholar
  9. 9.
    R. Hojman, C. Mukku, W. Sayed, Phys. Rev. D 22, 1915 (1980)CrossRefGoogle Scholar
  10. 10.
    J. Audretsh, Phys. Rev. D 24, 1470 (1991); B. Figuereido, I. Soares, J. Tiomno, Class. Quan. Grav. 9, 1593 (1992)CrossRefGoogle Scholar
  11. 11.
    P. Majumdar, S. SenGupta, Class. Quan. Grav. 16, L89 (1999)Google Scholar
  12. 12.
    P. Majumdar, 2001, Preprint hep-th/0105122Google Scholar
  13. 13.
    T. Han, J.D. Lykken, R.J. Zhang, Phys. Rev. D 59, 105006 (1999)CrossRefGoogle Scholar
  14. 14.
    W.D. Goldberger, M.B. Wise, Phys. Rev. D 60, 107505 (1999)CrossRefGoogle Scholar
  15. 15.
    D. Maity, P. Majumdar, S. SenGupta, hep-th/0401218Google Scholar
  16. 16.
    S. Kar, P. Majumdar, S. SenGupta, A. Sinha, Eur. Phys. J. C 23, 357 (2002); S. Kar, P. Majumdar, S. SenGupta, S. Sur, Class. Quant. Grav. 19, 677 (2002); D. Maity, S. SenGupta, hep-th/0311142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteJhusi, AllahabadIndia
  2. 2.Departamento de Fisica da FCULCampo GrandeLisboaPortugal
  3. 3.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceCalcuttaIndia
  4. 4.Department of PhysicsJadavpur UniversityCalcuttaIndia

Personalised recommendations