Advertisement

Finite supersymmetry transformations

  • N. IlievaEmail author
  • H. Narnhofer
  • W. Thirring
theoretical physics
  • 32 Downloads

Abstract.

We investigate simple examples of supersymmetry algebras with real and Grassmann parameters. Special attention is paid to the finite supertransformations and their probability interpretation. Furthermore we look for combinations of bosons and fermions which are invariant under supertransformations. These combinations correspond to states that are highly entangled.

Keywords

Probability Interpretation Supersymmetry Transformation Supersymmetry Algebra Grassmann Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wess, J. Bagger, Supersymmetry and supergravity, 2nd ed. (Princeton University Press, Princeton, NJ 1992)Google Scholar
  2. 2.
    E. Witten, Nucl. Phys. B 185, 513 (1981)CrossRefGoogle Scholar
  3. 3.
    R.Y. Levine, Y. Tomozawa, J. Math. Phys. 23, 1415 (1982)CrossRefMathSciNetGoogle Scholar
  4. 4.
    P. Freund, Introduction to supersymmetry (Cambridge University Press, Cambridge 1986)Google Scholar
  5. 5.
    L. Girardello, M.T. Grisaru, P. Salomonson, Nucl. Phys. B 178, 331 (1981)CrossRefGoogle Scholar
  6. 6.
    L. van Hove, Nucl. Phys. B 207, 15 (1982)CrossRefGoogle Scholar
  7. 7.
    D. Buchholz, I. Ojima, Nucl. Phys. B 498, 228 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    H. Grosse, L. Pittner, J. Math. Phys. 29, 110 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    H. Grosse, E. Langmann, Phys. Lett. A 176, 307 (1993)CrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Buchholz, in Lecture Notes in Physics, vol. 539 (2000) pp. 211-220 (hep-th/ 9812179)Google Scholar
  11. 11.
    N. Seiberg, JHEP 0306, 010 (2003) (hep-th/0305248)CrossRefGoogle Scholar
  12. 12.
    J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)Google Scholar
  13. 13.
    A. Jaffe, A. Lesniewski, J. Weitsman, Commun. Math. Phys. 112, 75 (1987)MathSciNetzbMATHGoogle Scholar
  14. 14.
    H. Nicolai, J. Math. A: Math. Gen. 9, 1497 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Theory DivisionCERNSwitzerland
  2. 2.Institut für Theoretische PhysikUniversität WienAustria
  3. 3.Erwin Schrödinger International Institute for Mathematical PhysicsViennaAustria

Personalised recommendations