Study of Z pair production and anomalous couplingsin e + e- collisions at \(\sqrt{s}\) between 190 GeV and 209 GeV

  • The OPAL Collaboration
experimental physics

Abstract.

A study of Z-boson pair production in e + e- annihilation at center-of-mass energies between 190 GeV and 209 GeV is reported. Final states containing only leptons, (\(\ell^{ + }\ell^{-}\ell^{ + }\ell^{-}\) and \(\ell^{ + }\ell^{-}\nu\overline{\nu}\)), quark and lepton pairs, (\(\mathrm{q \bar{q}}\ell^{ + }\ell^{-}\), \(\mathrm{q \bar{q}}\nu\overline{\nu}\)) and only hadrons (\(\mathrm{q \bar{q}}\mathrm{q \bar{q}}\)) are considered. In all states with at least one Z boson decaying hadronically, lifetime, lepton and event-shape tags are used to separate \(\mathrm{b \bar{b}}\) pairs from \(\mathrm{q \bar{q}}\) final states. Limits on anomalous ZZ\(\gamma\) and ZZZ couplings are derived from the measured cross sections and from event kinematics using an optimal observable method. Limits on low scale gravity with large extra dimensions are derived from the cross sections and their dependence on polar angle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L3 Collab., M. Acciarri, Phys. Lett. B 450, 281 (1999)CrossRefGoogle Scholar
  2. 2.
    ALEPH Collab., R. Barate, Phys. Lett. B 469, 287 (1999).CrossRefGoogle Scholar
  3. 3.
    OPAL Collab., G. Abbiendi,, Phys. Lett. B 476, 256 (2000).CrossRefGoogle Scholar
  4. 4.
    DELPHI Collab., P. Abreu, Phys. Lett. B 497, 199 (2001).CrossRefGoogle Scholar
  5. 5.
    R.W. Brown and K.O. Mikaelian, Phys. Rev. D 19, 922 (1979).CrossRefGoogle Scholar
  6. 6.
    Particle Data Group, D.E. Groom, Eur. Phys. J. C 15, 1 (2000)Google Scholar
  7. 7.
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B 282, 253 (1987).CrossRefGoogle Scholar
  8. 8.
    D. Chang, W.-Y. Keung and P.B. Pal, Phys. Rev. D 51, 1326 (1995).CrossRefGoogle Scholar
  9. 9.
    K. Agashe and N.G. Deshpande, Phys. Lett. B 456, 60 (1999).CrossRefGoogle Scholar
  10. 10.
    OPAL Collab., G. Abbiendi, Eur. Phys. J. C 7, 407 (1999)CrossRefGoogle Scholar
  11. 11.
    OPAL Collab., K. Ahmet, Nucl. Instrum. Methods A 305, 275 (1991).Google Scholar
  12. 12.
    S. Anderson, Nucl. Instrum. Methods A 403, 326 (1998). CrossRefGoogle Scholar
  13. 13.
    M. Arignon, Nucl. Instrum. Methods A 313, 103 (1992)CrossRefGoogle Scholar
  14. 14.
    J.T. Baines, Nucl. Instrum. Methods A 325, 271 (1993)CrossRefGoogle Scholar
  15. 15.
    OPAL Collab., G. Abbiendi, Eur. Phys. J. C 14, 373 (2000).CrossRefGoogle Scholar
  16. 16.
    LEP Energy Working Group, A. Blondel, Eur. Phys. J. C 11, 573 (1999)CrossRefGoogle Scholar
  17. 17.
    OPAL Collab., K. Ackerstaff, Eur. Phys. J. C 2, 441 (1998).CrossRefGoogle Scholar
  18. 18.
    OPAL Collab., K. Ackerstaff, Eur. Phys. J. C 6, 1 (1999).CrossRefGoogle Scholar
  19. 19.
    S. Jadach, Comput. Phys. Commun. 102, 229 (1997)CrossRefGoogle Scholar
  20. 20.
    J. Allison, Nucl. Instrum. Methods A 317, 47 (1992).CrossRefGoogle Scholar
  21. 21.
    J. Fujimoto, Comput. Phys. Commun. 100, 128 (1997).CrossRefGoogle Scholar
  22. 22.
    S. Jadach and W. Płaczek, B.F.L. Ward, Phys. Rev. D 56, 6939 (1997).CrossRefGoogle Scholar
  23. 23.
    T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).CrossRefGoogle Scholar
  24. 24.
    M.W. Grünewald and G. Passarino,, Four-Fermion Production in Electron-Positron Collisions, CERN-2000-9-A, arXiv:hep-ph/0005309.Google Scholar
  25. 25.
    U. Baur and D. Rainwater, Phys. Rev. D 62, 113011 (2000).Google Scholar
  26. 26.
    S. Jadach, B.F.L. Ward and Z. Was, Phys. Lett. B 449, 97 (1999).CrossRefGoogle Scholar
  27. 27.
    G. Marchesini, Comput. Phys. Commun. 67, 465 (1992).MATHGoogle Scholar
  28. 28.
    S. Jadach, W. Płaczek, B.F.L. Ward, Phys. Lett. B 390, 298 (1997).CrossRefGoogle Scholar
  29. 29.
    D. Karlen, Nucl. Phys. B 289, 23 (1987).CrossRefGoogle Scholar
  30. 30.
    S. Jadach,, Comput. Phys. Commun. 119, 272 (1999).CrossRefGoogle Scholar
  31. 31.
    F.A. Berends, R. Pittau and R. Kleiss, Comput. Phys. Commun. 85, 437 (1995).CrossRefGoogle Scholar
  32. 32.
    R. Engel and J. Ranft, Phys. Rev. D 54, 4244 (1996).CrossRefGoogle Scholar
  33. 33.
    A. Buijs W.G. Langeveld, M.H. Lehto and D.J. Miller, Comput. Phys. Commun. 79, 523 (1994).CrossRefGoogle Scholar
  34. 34.
    J.A.M. Vermaseren, Nucl. Phys. B 229, 347 (1983).CrossRefGoogle Scholar
  35. 35.
    OPAL Collab., G. Abbiendi, Phys. Lett. B 438, 391 (1998).CrossRefGoogle Scholar
  36. 36.
    OPAL Collab., K. Ackerstaff, Phys. Lett. B 389, 416 (1996)CrossRefGoogle Scholar
  37. 37.
    OPAL Collab., G. Abbiendi, Phys. Lett. B 544, 259 (2002).CrossRefGoogle Scholar
  38. 38.
    N. Brown and W.J. Stirling, Phys. Lett. B 252, 657 (1990)CrossRefGoogle Scholar
  39. 39.
    G. Parisi, Phys. Lett. B 74, 65 (1978)CrossRefGoogle Scholar
  40. 40.
    S. Catani and M. H. Seymour, Phys. Lett. B 378, 287 (1996).CrossRefGoogle Scholar
  41. 41.
    M. Warsinsky, Untersuchung des Prozesses \(\mathrm{e}^+ \mathrm{e}^- \to\) ZZ am LEP-Speicherring mit Hilfe von optimalen Observablen, Diplomarbeit, Bonn University, February 2001, BONN-IB-2001-05.Google Scholar
  42. 42.
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phys. Lett. B 429, 263 (1998).CrossRefGoogle Scholar
  43. 43.
    J.C. Long, Nature 421, 922 (2003).CrossRefGoogle Scholar
  44. 44.
    C.D. Hoyle, Phys. Rev. Lett. 86, 1418 (2001). EÖT-WASH Group, E. G. Adelberger, Sub-millimeter tests of the gravitational inverse square law, arXiv:hep-ex/0202008.CrossRefGoogle Scholar
  45. 45.
    J.L. Hewett, Phys. Rev. Lett. 82, 4765 (1999).CrossRefGoogle Scholar
  46. 46.
    T. Han, J.D. Lykken and R.J. Zhang, Phys. Rev. D 59, 105006 (1999), correction arXiv:hep-ph/9811350 v4.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • The OPAL Collaboration

There are no affiliations available

Personalised recommendations