Advertisement

Softening the naturalness problem

  • X. CalmetEmail author
theoretical physics

Abstract.

It was observed by Veltman a long time ago that a special value for the Higgs boson mass could lead to a cancellation of the quadratically divergent corrections to the Higgs boson’s squared mass which appear at one loop. We present a class of low energy models that allow one to soften the naturalness problem in the sense that there can be a cancellation of radiative corrections appearing at one loop. The naturalness problem is shifted from the 1 TeV region to the 10 TeV region. Depending on the specific model under consideration, this scale can even be shifted to a higher energy scale. Signatures of these models are discussed.

Keywords

Higgs Boson Specific Model Energy Scale Energy Model Radiative Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961)CrossRefGoogle Scholar
  2. 2.
    H. Fritzsch, M. Gell-Mann, Current algebra: Quarks and what else? in Physics, Proceedings of the XVI International Conference on High Chicago 1972 p.135, edited by J.D. Jackson, A. Roberts [hep-ph/0208010]Google Scholar
  3. 3.
    P.W. Higgs, Phys. Lett. 12, 132 (1964)CrossRefGoogle Scholar
  4. 4.
    M. Veltman, Acta Phys. Polon. B 12, 437 (1981)Google Scholar
  5. 5.
    G. ‘t Hooft, in Recent Developments In Gauge Theories, Cargesé 1979, edited by G. ‘t Hooft (Plenum Press, New York 1980), Lecture III, p. 135Google Scholar
  6. 6.
    G. ‘t Hooft, Nucl. Phys. B 35, 167 (1971)CrossRefGoogle Scholar
  7. 7.
    C.T. Hill, E.H. Simmons, hep-ph/0203079Google Scholar
  8. 8.
    H.E. Haber, G.L. Kane, Phys. Rept. 117, 75 (1985)CrossRefGoogle Scholar
  9. 9.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998) [hep-ph/9803315]CrossRefGoogle Scholar
  10. 10.
    H. Georgi, A. Pais, Phys. Rev. D 12, 508 (1975)CrossRefGoogle Scholar
  11. 11.
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire, J.G. Wacker, JHEP 0208, 021 (2002) [hep-ph/0206020]CrossRefGoogle Scholar
  12. 12.
    C. Csaki, J. Hubisz, G.D. Kribs, P. Meade, J. Terning, hep-ph/0211124Google Scholar
  13. 13.
    R. Decker, J. Pestieau, Mod. Phys. Lett. A 4, 2733 (1989)Google Scholar
  14. 14.
    C.F. Kolda, H. Murayama, JHEP 0007, 035 (2000) [hep-ph/0003170]Google Scholar
  15. 15.
    K. Hagiwara [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Pukhov, CompHEP: A package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288Google Scholar
  17. 17.
    D.L. Bennett, H.B. Nielsen, I. Picek, Phys. Lett. B 208, 275 (1988)CrossRefGoogle Scholar
  18. 18.
    C. Newton, T.T. Wu, Z. Phys. C 62, 253 (1994)Google Scholar
  19. 19.
    X. Calmet, Eur. Phys. J. C 28, 451 (2003) [hep-ph/0206091]Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations