Advertisement

Electromagnetic corrections in hadronic processes

  • J. Gasser
  • A. Rusetsky
  • I. Scimemi
theoretical physics

Abstract.

In many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. On the other hand, the splitting of the Hamiltonian into a strong and an electromagnetic part cannot be performed in a unique manner, because photon loops generate ultraviolet divergences. In the present article, we propose a convention for disentangling the two effects: one matches the parameters of two theories - with and without electromagnetic interactions - at a given scale \(\mu_1\), referred to as the matching scale. This method enables one to analyse the separation of strong and electromagnetic contributions in a transparent manner. We first study in a Yukawa-type model the dependence of strong and electromagnetic contributions on the matching scale. In a second step, we investigate this splitting in the linear sigma model at one-loop order, and consider in some detail the construction of the corresponding low-energy effective Lagrangian, which exactly implements the splitting of electromagnetic and strong interactions carried out in the underlying theory. We expect these model studies to be useful in the interpretation of the standard low-energy effective theory of hadrons, leptons and photons.

Keywords

Sigma Model Effective Theory Electromagnetic Interaction Chiral Perturbation Theory Underlying Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Urech, Nucl. Phys. B 433, 234 (1995) [hep-ph/9405341]CrossRefGoogle Scholar
  2. 2.
    H. Neufeld, H. Rupertsberger, Z. Phys. C 71, 131 (1996) [hep-ph/9506448]CrossRefGoogle Scholar
  3. 3.
    U.-G. Meißner, S. Steininger, Phys. Lett. B 419, 403 (1998) [hep-ph/9709453]CrossRefGoogle Scholar
  4. 4.
    M. Knecht, H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000) [hep-ph/9909284]CrossRefGoogle Scholar
  5. 5.
    V. Cirigliano, M. Knecht, H. Neufeld, H. Pichl, Eur. Phys. J. C 27, 255 (2003) [hep-ph/0209226]Google Scholar
  6. 6.
    V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 23, 121 (2002) [hep-ph/0110153]Google Scholar
  7. 7.
    J. Bijnens, Phys. Lett. B 306, 343 (1993) [hep-ph/9302217]CrossRefGoogle Scholar
  8. 8.
    J. Bijnens, J. Prades, Nucl. Phys. B 490, 239 (1997) [hep-ph/9610360]CrossRefGoogle Scholar
  9. 9.
    R. Baur, R. Urech, Nucl. Phys. B 499, 319 (1997) [hep-ph/9612328]CrossRefGoogle Scholar
  10. 10.
    B. Moussallam, Nucl. Phys. B 504, 381 (1997) [hep-ph/9701400]CrossRefGoogle Scholar
  11. 11.
    V.E. Lyubovitskij, Th. Gutsche, A. Faessler, R. Vinh Mau, Phys. Lett. B 520, 204 (2001) [hep-ph/0108134]CrossRefGoogle Scholar
  12. 12.
    U.G. Meißner, G. Müller, S. Steininger, Phys. Lett. B 406, 154 (1997) [Erratum B 407, 454 (1997)] [hep-ph/9704377]CrossRefGoogle Scholar
  13. 13.
    M. Knecht, R. Urech, Nucl. Phys. B 519, 329 (1998) [hep-ph/9709348]CrossRefGoogle Scholar
  14. 14.
    H. Jallouli, H. Sazdjian, Phys. Rev. D 58, 014011 (1998) [Erratum D 58, 099901 (1998)] [hep-ph/9706450]CrossRefGoogle Scholar
  15. 15.
    V. Cirigliano, G. Ecker, H. Neufeld, Phys. Lett. B 513, 361 (2001) [hep-ph/0104267]CrossRefGoogle Scholar
  16. 16.
    B. Ananthanarayan, B. Moussallam, JHEP 0205, 052 (2002) [hep-ph/0205232]CrossRefGoogle Scholar
  17. 17.
    For a recent review on this topic, see J. Bijnens, J. Gasser, Phys. Scripta T 99, 34 (2002) [hep-ph/0202242]. The literature on this issue may be traced back from this referenceGoogle Scholar
  18. 18.
    K. Maltman, D. Kotchan, Mod. Phys. Lett. A 5, 2457 (1990)Google Scholar
  19. 19.
    As we have recently learned, similar ideas were developed independently by J. Gegelia [20]Google Scholar
  20. 20.
    J. Gegelia, private communicationGoogle Scholar
  21. 21.
    J. Gasser, H. Leutwyler, Phys. Rept. 87, 77 (1982)CrossRefGoogle Scholar
  22. 22.
    J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984)MathSciNetGoogle Scholar
  23. 23.
    A. Nyffeler, A. Schenk, Annals Phys. 241, 301 (1995) [hep-ph/9409436]CrossRefMathSciNetGoogle Scholar
  24. 24.
    T. Das, Phys. Rev. Lett. 18, 759 (1967)CrossRefGoogle Scholar
  25. 25.
    B. Kubis, U.-G. Meißner, Nucl. Phys. A 671, 332 (2000) [Erratum A 692, 647 (2001)] [hep-ph/9908261]CrossRefGoogle Scholar
  26. 26.
    R. Kaiser, Phys. Rev. D 63, 076010 (2001) [hep-ph/0011377]CrossRefGoogle Scholar
  27. 27.
    K. Hagiwara [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • J. Gasser
    • 1
  • A. Rusetsky
    • 2
    • 3
  • I. Scimemi
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)Universität BonnBonnGermany
  3. 3.ECT* European Centre for Theoretical Studies in Nuclear Physics and Related AreasVillazzano (Trento)Italy

Personalised recommendations