Advertisement

Deformed coherent and squeezed states of multiparticle processes

  • B. Aneva
theoretical physics

Abstract.

Deformed squeezed states are introduced as the q-analogues of the conventional undeformed harmonic oscillator algebra squeezed states. It is shown that the boundary vectors in the matrix-product states approach to multiparticle diffusion processes are deformed coherent or squeezed states of a deformed harmonic oscillator algebra. A deformed squeezed and coherent-states solution to the n-species stochastic diffusion boundary problem is proposed and studied.

Keywords

Diffusion Process Harmonic Oscillator Boundary Problem Diffusion Boundary Boundary Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, Naturwissenschaften 14, 664 (1926)Google Scholar
  2. 2.
    R. Glauber, Phys. Rev. 130, 188 (1963)CrossRefGoogle Scholar
  3. 3.
    A.M. Perelomov, Generalized coherent states and their applications (Springer, New York 1986)Google Scholar
  4. 4.
    R. Gilmore, Ann. Phys. (NY) 74, 391 (1972)Google Scholar
  5. 5.
    M. Aric, D.D. Coon, J. Math. Phys. 17, 524 (1976)CrossRefGoogle Scholar
  6. 6.
    B. Jurco, Lett. Math. Phys. 21, 51 (1991)zbMATHGoogle Scholar
  7. 7.
    J. Klauder, B. Skagerstam, Coherent states (World Scientific, Singapore 1985)Google Scholar
  8. 8.
    B. Derrida, M.R. Evans, V. Hakim, V. Pasquier, J. Phys. A 26, 1493 (1991)zbMATHGoogle Scholar
  9. 9.
    K. Krebs, S. Sandow, J. Phys. A 30, 3163 (1997)Google Scholar
  10. 10.
    A. Isaev, P. Pyatov, V. Rittenberg, cond-matt/0103603 (2001)Google Scholar
  11. 11.
    B. Aneva, J. Phys. A 35, 859 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    J. Wess, B. Zumino, Nucl. Phys. (Proc. Suppl.) B 18, 302 (1991)CrossRefGoogle Scholar
  13. 13.
    D. Fairlie, C. Zachos, Phys. Lett. B 256, 43 (1991)CrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Stoler, Phys. Rev D 1, 3217 (1970)CrossRefGoogle Scholar
  15. 15.
    R.McDermott, A. Solomon J. Phys. A 27, 2037 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    K. Penson, A. Solomon, J. Math. Phys. 40, 2354 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    H.P. Yuen, Phys. Rev A 13, 2226 (1976)CrossRefGoogle Scholar
  18. 18.
    K. Wodkiewicz, J. Eberly, J. Opt. Soc. Am. B 2, 458 (1985)Google Scholar
  19. 19.
    M.M. Nieto, D.R. Truax, Phys. Rev. Lett. 71, 2843 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    D.A. Trifonov, J. Math. Phys. 35 (1994) 2297Google Scholar
  21. 21.
    J. Katriel, A. Solomon, J. Phys. A 24, 2093 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    E. Celeghini, M. Raseti, G. Vitielo, Phys. Rev. Lett. 66, 2056 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    R. Blythe, M.R. Evans, F. Colaiori, F.H.L. Essler, J. Phys. A 33, 2313 (2000)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • B. Aneva
    • 1
    • 2
    • 3
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Physics DepartmentLMU UniversityMunichGermany
  3. 3.INRNEBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations