Advertisement

Forests, groves and Higgs bosons

Gauge invariance classes in spontaneously broken gauge theories
  • T. OhlEmail author
  • C. Schwinn
theoretical physics

Abstract.

We determine the gauge invariance classes of tree level Feynman diagrams in spontaneously broken gauge theories, providing a proof for the formalism of gauge and flavor flips. We find new gauge invariance classes in theories with a nonlinearly realized scalar sector. In unitarity gauge, the same gauge invariance classes correspond to a decomposition of the scattering amplitude into pieces that satisfy the relevant Ward identities individually. In theories with a linearly realized scalar sector in \(R_\xi\) gauge, no additional non-trivial gauge invariance classes exist compared to the unbroken case.

Keywords

Gauge Theory Tree Level Feynman Diagram Gauge Invariance Ward Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], TESLA Technical Design Report Part III: Physics at an \(e^+e^-\) Linear Collider, [arXiv:hep-ph/0106315]Google Scholar
  2. 2.
    A. Djouadi, W. Kilian, M. Mühlleitner, P.M. Zerwas, Eur. Phys. J. C 10, 27 (1999) [arXiv:hep-ph/9903229]CrossRefGoogle Scholar
  3. 3.
    A. Djouadi, J. Kalinowski, P.M. Zerwas, Mod. Phys. Lett. A 7, 1765 (1992)Google Scholar
  4. 4.
    S. Moretti, Phys. Lett. B 452, 338 (1999), [arXiv:hep-ph/9902214]CrossRefGoogle Scholar
  5. 5.
    D. Bardin et al., Nucl. Phys. Proc. Suppl. B 37, 148 (1994), [arXiv:hep-ph/9406340]CrossRefGoogle Scholar
  6. 6.
    E. Boos, T. Ohl, Phys. Rev. Lett. 83, 480 (1999), [arXiv:hep-ph/9903357]CrossRefGoogle Scholar
  7. 7.
    S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969)CrossRefGoogle Scholar
  8. 8.
    T. Ohl, Objective Caml program bocagesGoogle Scholar
  9. 9.
    T. Ohl, in 2nd ECFA/DESY Study 1998-2001 55-204, LC-REV-1999-005, [arXiv:hep-ph/9911437]Google Scholar
  10. 10.
    D. Ondreka, diploma thesis, TU Darmstadt, 2000Google Scholar
  11. 11.
    M.S. Chanowitz, M. Golden, H. Georgi, Phys. Rev. D 36, 1490 (1987)CrossRefGoogle Scholar
  12. 12.
    J. Zinn-Justin, Renormalization of gauge theories, in Trends in elementary particle theory (Lecture Notes in Physics 37), edited by H. Rollnik, K. Dietz (Springer, 1975)Google Scholar
  13. 13.
    C. Schwinn, Ph.D. thesis, TU Darmstadt (2003), [arXiv:hep-ph/0307057]Google Scholar
  14. 14.
    H.-J. He, Y.-P. Kuang, C.P. Yuan, B. Zhang, Phys. Lett. B 554, 64 (2003), [arXiv:hep-ph/0211229]CrossRefGoogle Scholar
  15. 15.
    M. Moretti, T. Ohl, J. Reuter, in 2nd ECFA/DESY Study 1998-2001, 1981-2009 (2001), LC-TOOL-2001-040, [arXiv:hep-ph/0102195]Google Scholar
  16. 16.
    D. Ondreka, Ph.D. thesis, TU Darmstadt, 2003 (in preparation)Google Scholar
  17. 17.
    R.P. Feynman, Acta Phys. Polon. 24, 697 (1963)Google Scholar
  18. 18.
    T. Ohl, J. Reuter, WUE-ITP-2002-038, TTP-02-42, [arXiv:hep-th/0212224]Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für Theoretische Physik und AstrophysikUniversität Würzburg, Am HublandWürzburgGermany
  2. 2.Institut für KernphysikDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations