Advertisement

Type IIB 2-form fields and gauge coupling constant of 4D \({\cal N}=2\) super QCD

  • T. KitaoEmail author
theoretical physics
  • 27 Downloads

Abstract.

We study the relation between the Type IIB (NSNS and RR) 2-form fields and the (complex) gauge coupling constant of the 4D \({\cal N}=2\) SU(N c ) super Yang-Mills theory with N f fundamental matter particles. We start from the analysis of the D2-brane world-volume theory with heavy N c quarks on the N f D6 supergravity background. After a sequence of T- and S-dualities, we obtain the (generalized) 2-forms in the configuration with N c D5-branes wrapping on a vanishing two-cycle under the influence of the background. These 2-forms show the same behavior as the gauge coupling constant of the 4D \({\cal N}=2\) super QCD. The background reduces to the \({\mathrm {Z}}_{N_f}\) orbifold in the twelve-dimensional space-time formally realized by introducing the two parameters as additional space coordinates. The 10D gravity dual is suggested as the 2D flip in this twelve-dimensional space-time. In the case of N f = 2N c , this gravity dual becomes AdS5 x S5/Z2 with a D3-charge which depends on the constant generalized NSNS 2-form. This is the result expected from the M-theory QCD configuration. Based on the known exact result, we also discuss this configuration after including non-perturbative effects.

Keywords

Gauge Coupling Exact Result Fundamental Matter Additional Space Gauge Coupling Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200MathSciNetzbMATHGoogle Scholar
  2. 2.
    Igor R. Klebanov, Nikita A. Nekrasov, Nucl. Phys. B 574, 263 (2000), hep-th/9911096CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda, R. Marotta, I. Pesando, JHEP 0102, 014 (2001), hep-th/0011077Google Scholar
  4. 4.
    I.R. Klebanov, A.A. Tseytlin, Nucl. Phys. B 578, 123 (2000), hep-th/0002159CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Juan Maldacena, Carlos Nunez, Int. J. Mod. Phys. A 16, 822 (2001), hep-th/0007018CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bjorn Brinne, Ansar Fayyazuddin, Subir Mukhopadhyay, Douglas J. Smith, JHEP 0012, 013 (2000), hep-th/0009047Google Scholar
  7. 7.
    Joseph Polchinski, Int. J. Mod. Phys. A 16, 707 (2001), hep-th/0011193CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Rajaraman, Supergravity Duals for N = 2 Gauge Theories, hep-th/0011279Google Scholar
  9. 9.
    M. Petrini, R. Russo, A. Zaffaroni, Nucl. Phys. B 608, 145 (2001), hep-th/0104026CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Billó, L. Gallot, A. Liccardo, Nucl. Phys. B 614, (2001), hep-th/0105258Google Scholar
  11. 11.
    Jerome P. Gauntlett, Nakwoo Kim, Dario Martelli, Daniel Waldram, Phys. Rev. D 64, 106008 (2001), hep-th/0106117CrossRefGoogle Scholar
  12. 12.
    F. Bigazzi, A.L. Cotrone, A. Zaffaroni, Phys. Lett. B 519, 269 (2001), hep-th/0106160CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    M. Bertolini, V.L. Campos, G. Ferretti, P. Fré, P. Salomonson, M. Trigiante, Supersymmetric 3-branes on smooth ALE manifolds with flux, hep-th/0106186Google Scholar
  14. 14.
    P. Bain, Fractional D 3-branes in diverse backgrounds, hep-th/0112145Google Scholar
  15. 15.
    P. Di Vecchia, A. Lerda, P. Merlatti, N = 1 and N = 2 Super Yang-Mills theories from wrapped branes, hep-th/0205204Google Scholar
  16. 16.
    Mariana Grana, Joseph Polchinski, Phys. Rev. D 65, 126005 (2002), hep-th/0106014CrossRefGoogle Scholar
  17. 17.
    M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda, R. Marotta, Nucl. Phys. B 621, 157 (2002), hep-th/0107057CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Edward Witten, Nucl. Phys. B 500, 3 (1997), hep-th/9703166CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Joseph Polchinski, TASI Lectures on D-Branes, hep-th/9611050Google Scholar
  20. 20.
    Angel M. Uranga, JHEP 9901, 022 (1999), hep-th/9811004Google Scholar
  21. 21.
    Keshav Dasgupta, Sunil Mukhi, Nucl. Phys. B 551, 204 (1999), hep-th/9811139CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Ansar Fayyazuddin, Douglas J. Smith, JHEP 9904, 030 (1999), hep-th/9902210Google Scholar
  23. 23.
    A. Lawrence, N. Nekrasov, C. Vafa, Nucl. Phys. B 533, 199 (1998), hep-th/9803015CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Amihay Hanany, Edward Witten, Nucl. Phys. B 492, 152 (1997), hep-th/9611230CrossRefMathSciNetGoogle Scholar
  25. 25.
    Joaquim Gomis, Paul K. Townsend, Mattias, N.R. Wohlfarth, The 's-rule' exclusion principle and vacuum interpolation in world-volume dynamics, hep-th/0211020Google Scholar
  26. 26.
    John H. Schwarz, Phys. Lett. B 360, 1318 (1995)Google Scholar
  27. 27.
    Toshio Nakatsu, Kazutoshi Ohta, Takashi Yokono, Yuhsuke Yoshida, Nucl. Phys. B 519, 159 (1998), hep-th/9707258CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Michael R. Douglas, Gregory Moore, D-branes, Quivers, and ALE Instantons, hep-th/9603167Google Scholar
  29. 29.
    Yosuke Imamura, Nucl. Phys. B 537, 184 (1999), hep-th/9807179CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Curtis G. Callan, Alberto Guijosa, Konstantin G. Savvidy, Nucl. Phys. B 547, 127 (1999), hep-th/9810092CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    J.M. Camino, A.V. Ramallo, J.M. Sanchez de Santos, Nucl. Phys. B 562, 103 (1999), hep-th/9905118CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    J.M. Camino, A. Paredes, A.V. Ramallo, JHEP 0105, 011 (2001), hep-th/0104082.Google Scholar
  33. 33.
    C.P. Bachas, M.B. Green, JHEP 9801, 015 (1998), hep-th/9712187Google Scholar
  34. 34.
    Michael Green, Jeffrey A. Harvey, Gregory Moore, Class. Quant. Grav. 14, 47 (1997), hep-th/9605033CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Curtis G. Callan, Jr., Juan M. Maldacena, Nucl. Phys. B 513, 198 (1998), hep-th/9708147CrossRefMathSciNetGoogle Scholar
  36. 36.
    R.C. Myers, JHEP 9912, 022 (1999), hep-th/9910053Google Scholar
  37. 37.
    Nissan Itzhaki, Juan M. Maldacena, Jacob Sonnenschein, Shimon Yankielowicz, Phys. Rev. D 58, 046004 (1998), hep-th/9802042CrossRefGoogle Scholar
  38. 38.
    Akikazu Hashimoto, JHEP 9901, 018 (1999), hep-th/9812159Google Scholar
  39. 39.
    Paul S. Aspinwall, K3 Surfaces and String Duality, hep-th/9611137Google Scholar
  40. 40.
    Nick Dorey, Timothy J. Hollowood, Valentin V. Khoze, Michael P. Mattis, The Calculus of Many Instantons, hep-th/0206063Google Scholar
  41. 41.
    J.L.F. Barbon, A. Pasquinucci, Nucl. Phys. B 517, 125 (1998), hep-th/9708041CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    John Brodie, Nucl. Phys. B 532, 137 (1998), hep-th/9803140CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    M. Wijnholt, S. Zhukov, Nucl. Phys. B 639, 343 (2002), hep-th/0110109CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Hadron-Nuclear-Quantum Field Theory Group, Institute of Particle and Nuclear Studies, KEKHigh Energy Accelerator Research OrganizationTsukuba-shi, Ibaraki-kenJapan

Personalised recommendations