Color dielectric model with two scalar fields

  • A. WereszczyńskiEmail author
  • M. Ślusarczyk
theoretical physics


SU(2) Yang-Mills theory coupled in a non-minimal way to two scalar fields is discussed. For the massless scalar fields a family of finite energy solutions generated by an external, static electric charge is found. Additionally, there is a single solution which can be interpreted as a confining one. Similar solutions have been obtained in the magnetic sector. In the case of massive scalar fields the Coulomb problem is investigated. We find that asymptotic behavior of the fields can also, for some values of the parameters of the model, give confinement of the electric charge. Quite interestingly one glueball-meson coupling gives the linear confining potential. Finally, it is shown how, for one non-dynamical scalar field, we can derive the color dielectric generalization of the Pagels-Tomboulis model.


Color Asymptotic Behavior Scalar Field Electric Charge Similar Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Friedberg, T.D. Lee, Phys. Rev. D 15, 1694 (1977)CrossRefGoogle Scholar
  2. 2.
    M. Ślusarczyk, A. Wereszczyński, Acta Phys. Pol. B 32, 2911 (2001)Google Scholar
  3. 3.
    J.P. Ralston, hep-ph/0301089Google Scholar
  4. 4.
    M.M. Brisudova, L. Burakovsky, T. Goldman, A. Szczepaniak, nucl-th/0303012Google Scholar
  5. 5.
    R. Dick, Phys. Lett. B 397, 193 (1996)CrossRefGoogle Scholar
  6. 6.
    R. Dick, L.P. Fulcher, Eur. Phys. J. C 9, 271 (1999)CrossRefGoogle Scholar
  7. 7.
    D. Bazeia at al., hep-th/0210289Google Scholar
  8. 8.
    M. Cvetic, A.A. Tseytlin, Nucl. Phys. B 416, 137 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    J. Kiskis, Phys. Rev. D 21, 421 (1980)CrossRefGoogle Scholar
  10. 10.
    G. Martens, C. Greiner, S. Leopold, U. Mosel, hep-ph/0303017Google Scholar
  11. 11.
    E. Seiler, Phys. Rev. D 18, 482 (1978)CrossRefGoogle Scholar
  12. 12.
    L. Motyka, K. Zalewski, Z. Phys. C 69, 342 (1996)Google Scholar
  13. 13.
    A. Martin, Phys. Lett. B 100, 511 (1981)CrossRefGoogle Scholar
  14. 14.
    D. Gal'tsov, R. Kerner, Phys. Rev. Lett. 84, 5955 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)CrossRefGoogle Scholar
  16. 16.
    G. 't Hooft, hep-th/0207179Google Scholar
  17. 17.
    H. Pagels, E. Tomboulis, Nucl. Phys. B 143, 485 (1978)CrossRefGoogle Scholar
  18. 18.
    G. Matinyan, G.K. Savvidy, Nucl. Phys. B 134, 539 (1978)CrossRefGoogle Scholar
  19. 19.
    S.L. Adler, Phys. Rev. D 23, 2905 (1981)Google Scholar
  20. 20.
    P.M. Fishbane, S. Gasiorowicz, P. Kaus, Phys. Rev. D 36, 251 (1987)CrossRefGoogle Scholar
  21. 21.
    H. Arodź, M. Ślusarczyk, A. Wereszczyński, Acta Phys. Pol. B 32, 2155 (2001)Google Scholar
  22. 22.
    M. Ślusarczyk, A. Wereszczyński, Acta. Phys. Pol. B 33, 655 (2002)Google Scholar
  23. 23.
    W.S. Hon, C.S. Luo, G.G. Wong, Phys. Rev. D 64, 014028 (2001)CrossRefGoogle Scholar
  24. 24.
    L. Faddeev, A. Niemi, Nature 387, 58 (1997)CrossRefGoogle Scholar
  25. 25.
    H. Aratyn, L.A. Ferreira, A.H. Zimerman, Phys. Lett. B 456, 162 (1999)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Department of PhysicsUniversity of AlbertaEdmonton, AlbertaCanada

Personalised recommendations