Measurement of the \(\mathit{H Z\gamma}\) coupling at the future linear e + e - collider

  • M. Dubinin
  • H. J. Schreiber
  • A. Vologdin
theoretical physics


We examine the prospects for measuring the \(H Z \gamma\) coupling of a standard model-like Higgs boson with a mass between 120 and 160 GeV at the future TESLA linear e + e - collider, assuming an integrated luminosity of 1 ab-1 and a center-of-mass energy of 500 GeV. We consider the Higgs boson produced in association with \(\nu_e \bar{\nu_e}\) via the W W fusion reaction \(e^+e^- \rightarrow \nu_e \bar{\nu_e} H\), followed by the rare decay into a Z boson and a photon, \(H \rightarrow Z \gamma\). Accounting for all main background contributions, a precision of 27% can be achieved in unpolarized e + e - collisions for M H = 140 GeV. With appropriate initial state polarisations \(\Delta\)BF( \(H \rightarrow Z \gamma\))/BF( \(H \rightarrow Z \gamma\)), or the precisions on the \(H \rightarrow Z \gamma\) partial width, can be improved to 17% and provide valuable information on the \(H Z \gamma\) coupling. For M H = 120 and 160 GeV, the small significance of the signals in unpolarized collisions sets upper limits of 79% respectively 72% at 90% confidence level on the \(H \rightarrow Z \gamma\) branching fraction.


Confidence Level Higgs Boson State Polarisation Fusion Reaction Small Significance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. E. Accomando, Phys. Rep. 299, 1 (1998)CrossRefGoogle Scholar
  2. 2.
    For a review, see e.g. K. Desch, M. Battaglia, in Physics and experiments with future linear \(e^+e^- \) colliders, Proceedings of the 5th International Linear Collider Workshop, Batavia, IL, USA, 2000Google Scholar
  3. 3.
    G. Gounaris, D. Schildknecht, F. Renard, Phys. Lett. B 83, 191 (1979)CrossRefGoogle Scholar
  4. 4.
    J. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976)CrossRefGoogle Scholar
  5. 5.
    M. Battaglia, Proceedings of the Wordwide Study on Physics and Experiments with Future Linear \(e^+e^- \) Colliders, Sitges, Barcelona, Spain, April 28-May 5, 1999Google Scholar
  6. 6.
    H.M. Georgi, Phys. Rev. Lett. 40, 692 (1978)CrossRefGoogle Scholar
  7. 7.
    E. Boos, Eur. Phys. J. C 19, 455 (2001)Google Scholar
  8. 8.
    ATLAS Collaboration, ATLAS detector and physics performance, technical design report, vol. 2, report CERN/LHCC 99-15 ATLAS-TDR-15Google Scholar
  9. 9.
    G. Jikia, S. Söldner-Rembold, Nucl. Phys. Proc. Suppl. 82, 373 (2000)CrossRefGoogle Scholar
  10. 10.
    See e.g. G. Degrassi, hep-ph/0102137Google Scholar
  11. 11.
    ALEPH Collaboration, R. Barate, Phys. Lett. B 495, 1 (2000)CrossRefGoogle Scholar
  12. 12.
    TESLA Technical Design Report, DESY 2001-011, ECFA 2001-209, hep-ph/0106315, March 2001Google Scholar
  13. 13.
    American Linear Collider Working Group, BNL-67545, FERMILAB-Pub-00/152, LBNL-46299, SLAC-PUB-8495, UCRL-ID-139524, July, 2000Google Scholar
  14. 14.
    ACFA Linear Collider Working Group Report, KEK Report 2001-11, hep-ph/0109166, September 2001Google Scholar
  15. 15.
    E.E. Boos, INP MSU 94-36/358 and SNUTP-94-116, hep-ph/9503280Google Scholar
  16. 16.
    D. Schulte, private communicationGoogle Scholar
  17. 17.
    D.E. Groom, Eur. Phys. J. C 15, 1 (2000)Google Scholar
  18. 18.
    A.S. Belyaev, hep-ph/0101232Google Scholar
  19. 19.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)CrossRefGoogle Scholar
  21. 21.
    M. Dubinin, H.J. Schreiber, A. Vologdin, in preparationGoogle Scholar
  22. 22.
    M. Pohl, H.J. Schreiber, DESY 02-061, May 2002, hep-ex/0206009, LC-DET-2002-005Google Scholar
  23. 23.
    TESLA Technical Design Report, Part IV, A Detector for TESLA, DESY 2001-011, ECFA 2001-209, hep-ph/0106315, March 2001Google Scholar
  24. 24.
    S. Bethke, Nucl. Phys. B 370, 310 (1992)CrossRefGoogle Scholar
  25. 25.
    T. Cubitt, DESY Zeuthen summer student write-up, October 2001Google Scholar
  26. 26.
    D. Schulte, TESLA note 97-08Google Scholar
  27. 27.
    G.A. Schuler, T. Sjöstrand, CERN-TH/96-119Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. Dubinin
    • 1
  • H. J. Schreiber
    • 2
  • A. Vologdin
    • 1
  1. 1.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.DESY ZeuthenZeuthenGermany

Personalised recommendations