Advertisement

A covariant path amplitude description of flavour oscillations: the Gribov-Pontecorvo phasefor neutrino vacuum propagation is right

  • J. H. FieldEmail author
theoretical physics

Abstract.

An extended study is performed of geometrical and kinematical assumptions used in calculations of the neutrino oscillation phase. The almost universally employed "equal velocity" assumption, in which all neutrino mass eigenstates are produced at the same time, is shown to underestimate, by a factor of two, the neutrino propagation contribution to the phase. Taking properly into account, in a covariant path amplitude calculation, the incoherent nature of neutrino production as predicted by the standard model, results in an important source propagator contribution to the phase. It is argued that the commonly discussed Gaussian "wave packets" have no basis within quantum mechanics and are the result of a confused amalgam of quantum and classical wave concepts.

Keywords

Wave Packet Neutrino Mass Neutrino Oscillation Mass Eigenstates Oscillation Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969)CrossRefGoogle Scholar
  2. 2.
    H. Fritsch, P. Minkowski, Phys. Lett. B 62, 72 (1976)CrossRefGoogle Scholar
  3. 3.
    J.H. Field, The Description of Neutrino and Muon Oscillations by Interfering Amplitudes of Classical Space Time Paths, hep-ph/0110064Google Scholar
  4. 4.
    R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)CrossRefGoogle Scholar
  5. 5.
    R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals (McGraw Hill, New York 1965)Google Scholar
  6. 6.
    J.H. Field, A Covariant Feynman Path Amplitude Calculation of Neutrino and Muon Oscillations, hep-ph/0110066Google Scholar
  7. 7.
    R.E. Shrock, Phys. Lett. B 96, 159 (1980)CrossRefGoogle Scholar
  8. 8.
    R.E. Shrock, Phys. Rev. D 24, 1232 (1981)Google Scholar
  9. 9.
    Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)zbMATHGoogle Scholar
  10. 10.
    N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)CrossRefGoogle Scholar
  11. 11.
    H.J. Lipkin, Phys. Lett. B 348, 604 (1995)CrossRefGoogle Scholar
  12. 12.
    C. Giunti, C.W. Kim, U.W. Lee, Phys. Rev. D 44, 3635 (1991)CrossRefGoogle Scholar
  13. 13.
    C. Giunti, Neutrino Wave Packets in Quantum Field Theory, JHEP 11, 017 (2002)CrossRefGoogle Scholar
  14. 14.
    R.G. Winter, Lett. Nuovo Cim. 30, 101 (1981)Google Scholar
  15. 15.
    Y. Grossman, H.J. Lipkin, Phys. Rev. D 55, 2760 (1997)CrossRefGoogle Scholar
  16. 16.
    H.J. Lipkin, Quantum Mechanics of Neutrino Oscillations - Hand waving for pedestrians, hep-ph/9901299Google Scholar
  17. 17.
    N. Bohr, Nature (Suppl.) 121, 580 (1928)Google Scholar
  18. 18.
    P.A.M. Dirac, Physikalische Zeitschrift der Sowjetunion Band 3, Heft 1 (1933). Reprinted in Selected Papers on Quantum Electrodynamics, edited by J. Schwinger (Dover, New York 1958), p. 312Google Scholar
  19. 19.
    W. Heisenberg, The physical principals of the quantum theory, English Translation by C. Eckart, F.C. Hoyt (University of Chicago Press, Chicago 1930), Chapter IV, Section 2Google Scholar
  20. 20.
    R.P. Feynman, Phys. Rev. 76, 749 (1949)CrossRefzbMATHGoogle Scholar
  21. 21.
    S. Mohanty, Covariant Treatment of Flavour Oscillations, hep-ph/9702424Google Scholar
  22. 22.
    C. Giunti, C.W. Kim, U.W. Lee, Phys. Rev. D 45, 2414 (1992)CrossRefGoogle Scholar
  23. 23.
    See, for example, W. Heitler The quantum theory of radiation (O.U.P., Oxford 1954), Chapter V, Section 18Google Scholar
  24. 24.
    J.H. Field, paper in preparationGoogle Scholar
  25. 25.
    Review of Particle Properties, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000)Google Scholar
  26. 26.
    Y.N. Srivastava, A. Widom, E. Sassaroli, Phys. Lett. B 344, 436 (1995)CrossRefGoogle Scholar
  27. 27.
    S. Nussinov, Phys. Lett. B 63, 201 (1976)CrossRefGoogle Scholar
  28. 28.
    S. De Leo, P. Rotelli, Timelapse, JETP Lett. 76, 56 (2002)CrossRefGoogle Scholar
  29. 29.
    L. Krauss, F. Wilczek, Phys. Rev. Lett. 55, 122 (1985)CrossRefGoogle Scholar
  30. 30.
    B. Kayser, Phys. Rev. D 24, 110 (1981)Google Scholar
  31. 31.
    L. Stodolsky, Phys. Rev. D 58, 036006 (1998)CrossRefGoogle Scholar
  32. 32.
    I. Ioannision, A. Pilaftsis, Phys. Rev. D 59, 053003 (1999)CrossRefGoogle Scholar
  33. 33.
    B. Kayser, L. Stodolsky, Phys. Lett. B 359, 343 (1995)CrossRefGoogle Scholar
  34. 34.
    J. Rich, Phys. Rev. D 48, 4318 (1993)CrossRefGoogle Scholar
  35. 35.
    K. Kiers, N. Weiss, Phys. Rev. D 57, 3091 (1998)CrossRefGoogle Scholar
  36. 36.
    W. Grimus, S. Mohanty, P. Stockinger, Phys. Rev. D 59, 013011 (1999)CrossRefGoogle Scholar
  37. 37.
    W. Grimus, S. Mohanty, P. Stockinger, Phys. Rev. D 61, 033001 (1999)CrossRefGoogle Scholar
  38. 38.
    I.Yu. Kobzarev et al., Sov. J. Nucl. Phys. 35, 708 (1982)Google Scholar
  39. 39.
    J.E. Campagne, Phys. Lett. B 400, 135 (1997)CrossRefGoogle Scholar
  40. 40.
    Y. Srivastava, A. Widom, E. Sassaroli, Eur. Phys. J C 2, 769 (1998)CrossRefzbMATHGoogle Scholar
  41. 41.
    Yu.V. Shtanov, Phys. Rev. D 57, 4418 (1998)CrossRefGoogle Scholar
  42. 42.
    M. Beuthe, Phys. Rev. D 66, 013003 (2002)CrossRefGoogle Scholar
  43. 43.
    S. De Leo, G. Ducati, P. Rotelli, Mod. Phys. Lett. A 15, 2057 (2000)CrossRefGoogle Scholar
  44. 44.
    L.B. Okun, I.S. Tsukerman, Mod. Phys. Lett. A 15, 1481 (2000)CrossRefGoogle Scholar
  45. 45.
    C. Giunti, The Phase of Neutrino Oscillations, Physica Scripta 67, 29 (2003)CrossRefGoogle Scholar
  46. 46.
    S. De Leo, Nishi, P. Rotelli, Quantum Oscillation Phenomena, hep-ph/0208086Google Scholar
  47. 47.
    C. Giunti et al., Phys. Rev. D 48, 4310 (1993)CrossRefGoogle Scholar
  48. 48.
    H.G. Berry, J.L. Subtil, Phys. Rev. Lett. 27, 1103 (1971)CrossRefGoogle Scholar
  49. 49.
    C. Blondel, C. Delsart, F. Dulieu, Phys. Rev. Lett. 77, 3755 (1996)CrossRefGoogle Scholar
  50. 50.
    C. Bracher et al., Am. J. Phys. 66, 38 (1998)Google Scholar
  51. 51.
    C. Blondel, S. Berge, C. Delsart, Am J. Phys. 69, 810 (2001)CrossRefGoogle Scholar
  52. 52.
    S. Fukada et al., Phys. Rev. Lett. 86, 5651 (2001)CrossRefGoogle Scholar
  53. 53.
    Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002)CrossRefGoogle Scholar
  54. 54.
    C. Athanassopoulos et al., Phys. Rev. C 58, 2489 (1998)CrossRefGoogle Scholar
  55. 55.
    B. Zeitnitz et al., Progress in Particle and Nuclear Physics, 40, 169 (1998)Google Scholar
  56. 56.
    J.H. Field, Lepton flavour eigenstates do not exist if neutrinos are massive: 'neutrino oscillations' reconsidered, hep-ph/0301231.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Département de Physique Nucléaire et CorpusculaireUniversité de GenéveGenéve 4Switzerland

Personalised recommendations