QCD corrections to electroweak vector boson scattering at small scattering angles

  • K. PetersEmail author
  • G. P. Vacca
theoretical physics


We investigate the role of a certain class of QCD corrections to electroweak vector boson scattering at small scattering angles and large energies. These are present since, from the perturbative analysis, the vector bosons may dissociate into quark-antiquark pairs giving rise to color dipoles interacting through gluon exchanges. After the computation of the vector boson impact factors, we present expressions for the lowest order QCD scattering amplitude and for the leading logarithmic BFKL amplitude. Particularly we discuss numerical results for the process \(\gamma\gamma\to ZZ\). The QCD corrections to the cross section resulting from the interference with the electroweak ones are estimated and compared with the leading pure electroweak part. Corrections resulting from the leading log BFKL amplitude are of the order of a few percent already at the 0.5-1 TeV energy range.


Color Energy Range Lower Order Impact Factor Large Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baillargeon, G. Belanger, F. Boudjema, hep-ph/9405359Google Scholar
  2. 2.
    B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977)CrossRefGoogle Scholar
  3. 3.
    G. Bélanger, F. Boudjema, Phys. Lett. B 288, 210 (1992)CrossRefGoogle Scholar
  4. 4.
    F. Boudjema, in Physics and Experiments with Linear \(e^+e^-\) Colliders, Waikoloa, Hawaii, 1993, edited by F.A. Harris et al. (World Scientific), vol. II, p. 712Google Scholar
  5. 5.
    G.J. Gounaris, J. Layssac, P.I. Porfyriadis, F.M. Renard, Eur. Phys. J. C 13, 79 (2000)Google Scholar
  6. 6.
    J.L. Hewett, F.J. Petriello, Phys. Rev. D 64, 095017 (2001)CrossRefGoogle Scholar
  7. 7.
    T.G. Rizzo, Phys. Rev. D 60, 115010 (1999), hep-ph/9904380CrossRefGoogle Scholar
  8. 8.
    A. Denner, S. Dittmaier, T. Hahn, Phys. Rev. D 56, 117 (1997)CrossRefGoogle Scholar
  9. 9.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 44, 443 (1976)Google Scholar
  10. 10.
    G. Jikia, Nucl. Phys. B 405, 24 (1993)CrossRefGoogle Scholar
  11. 11.
    J. Bartels, K. Golec-Biernat, K. Peters, Acta Phys. Polon. B 34, 3051 (2003)Google Scholar
  12. 12.
    S.J. Brodsky, F. Hauptmann, D.E. Soper, Phys. Rev. D 56, 6957 (1997)CrossRefGoogle Scholar
  13. 13.
    H. Cheng, T.T. Wu, Phys. Rev. 182, 1852, 1868, 1873, 1899 (1969)CrossRefGoogle Scholar
  14. 14.
    V.S. Fadin, L.N. Lipatov, Phys. Lett B 429, 127 (1998), and references thereinCrossRefGoogle Scholar
  15. 15.
    J. Bartels, M.A. Braun, D. Colferai, G.P. Vacca, Eur. Phys. J. C 20, 323 (2001), hep-ph/0102221Google Scholar
  16. 16.
    L.N. Lipatov, Pomeron in quantum chromodynamics, in Perturbative QCD, pp. 411-489, edited by A.H. Mueller (World Scientific, Singapore 1989)Google Scholar
  17. 17.
    J. Bartels, M.G. Ryskin, G.P. Vacca, Eur. Phys. J. C 27, 101 (2003), hep-ph/0207173Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2. Dipartimento di FisicaUniversitá di Bologna and INFN - Sezione di BolognaBolognaItaly

Personalised recommendations