Advertisement

ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods

  • The GAMBIT Scanner Workgroup:
  • Csaba Balázs
  • Andy Buckley
  • Lars A. Dal
  • Ben Farmer
  • Paul Jackson
  • Abram Krislock
  • Anders Kvellestad
  • Daniel Murnane
  • Antje Putze
  • Are Raklev
  • Christopher Rogan
  • Aldo Saavedra
  • Pat Scott
  • Christoph Weniger
  • Martin WhiteEmail author
Open Access
Special Article - Tools for Experiment and Theory

Abstract

We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique to ColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics.

Notes

Acknowledgements

We thank the other members of the GAMBIT Collaboration for helpful discussions, comments and support. We are very grateful to Torbjörn Sjöstrand and Peter Skands for helpful discussions on the use of the Pythia event generator, and for code modifications to improve the efficiency and flexibility of its process selection and settings database. We warmly thank the Casa Matemáticas Oaxaca, affiliated with the Banff International Research Station, for hospitality whilst part of this work was completed, and the staff at Cyfronet, for their always helpful supercomputing support. GAMBIT has been supported by STFC (UK; ST/K00414X/1, ST/P000762/1), the Royal Society (UK; UF110191), Glasgow University (UK; Leadership Fellowship), the Research Council of Norway (FRIPRO 230546/F20), NOTUR (Norway; NN9284K), the Knut and Alice Wallenberg Foundation (Sweden; Wallenberg Academy Fellowship), the Swedish Research Council (621-2014-5772), the Australian Research Council (CE110001004, FT130100018, FT140100244, FT160100274), The University of Sydney (Australia; IRCA-G162448), PLGrid Infrastructure (Poland), Polish National Science Center (Sonata UMO-2015/17/D/ST2/03532), the Swiss National Science Foundation (PP00P2-144674), the European Commission Horizon 2020 Marie Skłodowska-Curie actions (H2020-MSCA-RISE-2015-691164), the ERA-CAN+ Twinning Program (EU and Canada), the Netherlands Organisation for Scientific Research (NWO-Vidi 680-47-532), the National Science Foundation (USA; DGE-1339067), the FRQNT (Québec) and NSERC/The Canadian Tri-Agencies Research Councils (BPDF-424460-2012).

References

  1. 1.
    GAMBIT Collaboration: P. Athron, C. Balazs et. al., GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool. arXiv:1705.07908
  2. 2.
    ATLAS Collaboration: G. Aad et. al., The ATLAS experiment at the CERN Large Hadron Collider. JINST3, S08003 (2008)Google Scholar
  3. 3.
    CMS Collaboration: S. Chatrchyan et al., The CMS experiment at the CERN LHC. JINST 3, S08004 (2008)Google Scholar
  4. 4.
    L3 Collaboration: M. Acciarri et al., Search for charginos and neutralinos in \(e^{+} e^{-}\) collisions at \(\sqrt{s} =\) 189 GeV. Phys. Lett. B 472, 420–433 (2000). arXiv:hep-ex/9910007
  5. 5.
    L3 Collaboration: M. Acciarri et al., Search for charginos with a small mass difference with the lightest supersymmetric particle at \(\sqrt{s} =\) 189 GeV. Phys. Lett. B 482, 31–42 (2000). arXiv:hep-ex/0002043
  6. 6.
    L3 Collaboration: P. Achard et al., Search for scalar leptons and scalar quarks at LEP. Phys. Lett. B 580, 37–49 (2004). arXiv:hep-ex/0310007
  7. 7.
    ALEPH Collaboration: A. Heister et. al., Search for charginos nearly mass degenerate with the lightest neutralino in \(e^+ e^-\) collisions at center-of-mass energies up to 209 GeV. Phys. Lett. B 533, 223–236 (2002). arXiv:hep-ex/0203020
  8. 8.
    ALEPH Collaboration: A. Heister et. al., Search for scalar leptons in \(e^+ e^-\) collisions at center-of-mass energies up to 209 GeV. Phys. Lett. B 526, 206–220 (2002). arXiv:hep-ex/0112011
  9. 9.
    ALEPH Collaboration: A. Heister et. al., Absolute lower limits on the masses of selectrons and sneutrinos in the MSSM. Phys. Lett. B 544, 73–88 (2002). arXiv:hep-ex/0207056
  10. 10.
    ALEPH Collaboration: A. Heister et. al., Absolute mass lower limit for the lightest neutralino of the MSSM from \(e^+ e^-\) data at \(\sqrt{s}\) up to 209 GeV. Phys. Lett. B 583, 247–263 (2004)Google Scholar
  11. 11.
    ALEPH Collaboration: A. Heister et al., Search for scalar quarks in \(e^{+} e^{-}\) collisions at \(\sqrt{s}\) up to 209 GeV. Phys. Lett. B 537, 5–20 (2002). arXiv:hep-ex/0204036
  12. 12.
    OPAL Collaboration: G. Abbiendi et al., Search for chargino and neutralino production at \(\sqrt{s} = 192 GeV\) to 209 GeV at LEP. Eur. Phys. J. C 35, 1–20 (2004). arXiv:hep-ex/0401026
  13. 13.
    OPAL Collaboration: G. Abbiendi et al., Search for anomalous production of dilepton events with missing transverse momentum in \(e^+ e^-\) collisions at \(\sqrt{s} =\) 183 GeV to 209 GeV. Eur. Phys. J. C 32, 453–473 (2004). arXiv:hep-ex/0309014
  14. 14.
    OPAL Collaboration: G. Abbiendi et al., Search for scalar top and scalar bottom quarks at LEP. Phys. Lett. B 545, 272–284 (2002). arXiv:hep-ex/0209026
  15. 15.
    DELPHI Collaboration: J. Abdallah et al., Searches for supersymmetric particles in \(e^+ e^-\) collisions up to 208 GeV and interpretation of the results within the MSSM. Eur. Phys. J. C 31, 421–479 (2003). arXiv:hep-ex/0311019
  16. 16.
    ATLAS Collaboration: G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214
  17. 17.
    S. Chatrchyan, V. Khachatryan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 ADSCrossRefGoogle Scholar
  18. 18.
    S. Kraml, S. Kulkarni et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. Eur. Phys. J. C 74, 2868 (2014). arXiv:1312.4175 ADSCrossRefGoogle Scholar
  19. 19.
    M. Papucci, K. Sakurai, A. Weiler, L. Zeune, Fastlim: a fast LHC limit calculator. Eur. Phys. J. C 74, 3163 (2014). arXiv:1402.0492 ADSCrossRefGoogle Scholar
  20. 20.
    S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Austri, B. Stienen, The BSM-AI project: SUSY-AIâĂŞgeneralizing LHC limits on supersymmetry with machine learning. Eur. Phys. J. C 77, 257 (2017). arXiv:1605.02797
  21. 21.
    H.K. Dreiner, M. Krämer, J.M. Lindert, B. O’Leary, SUSY parameter determination at the LHC using cross sections and kinematic edges. JHEP 4, 109 (2010). arXiv:1003.2648 ADSCrossRefGoogle Scholar
  22. 22.
    M. Bridges, K. Cranmer et al., A coverage study of CMSSM based on ATLAS sensitivity using fast neural networks techniques. JHEP 3, 12 (2011). arXiv:1011.4306 ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Buckley, A. Shilton, M.J. White, Fast supersymmetry phenomenology at the Large Hadron Collider using machine learning techniques. Comput. Phys. Commun. 183, 960–970 (2012). arXiv:1106.4613 ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    B.O’Leary, LHC-FASER. http://github.com/benoleary/LHC-FASER
  25. 25.
    C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White, Should we still believe in constrained supersymmetry? Eur. Phys. J. C 73, 2563 (2013). arXiv:1205.1568 ADSCrossRefGoogle Scholar
  26. 26.
    ATLAS Collaboration: ATLAS Collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 – interpreted in the phenomenological MSSM. JHEP 10, 134 (2015). arXiv:1508.06608
  27. 27.
    N. Bornhauser, M. Drees, Determination of the CMSSM parameters using neural networks. Phys. Rev. D 88, 075016 (2013). arXiv:1307.3383 ADSCrossRefGoogle Scholar
  28. 28.
    P. Bechtle, S. Belkner et al., SCYNet: testing supersymmetric models at the LHC with neural networks. arXiv:1703.01309
  29. 29.
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data. Comput. Phys. Commun. 187, 227–265 (2014). arXiv:1312.2591 ADSCrossRefGoogle Scholar
  30. 30.
    J. de Favereau et al., DELPHES 3. A modular framework for fast simulation of a generic collider experiment. JHEP 1402, 057 (2014). arXiv:1307.6346 CrossRefGoogle Scholar
  31. 31.
    S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225
  32. 32.
    J. Alwall, R. Frederix et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301 ADSCrossRefGoogle Scholar
  33. 33.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898 ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    P. Bechtle, O. Brein et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC. Eur. Phys. J. C 74, 2693 (2014). arXiv:1311.0055 ADSCrossRefGoogle Scholar
  36. 36.
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, Applying exclusion likelihoods from LHC searches to extended Higgs sectors. Eur. Phys. J. C 75, 421 (2015). arXiv:1507.06706
  37. 37.
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC. Eur. Phys. J. C 74, 2711 (2014). arXiv:1305.1933 ADSCrossRefGoogle Scholar
  38. 38.
    J. Bernon, B. Dumont, Lilith: a tool for constraining new physics from Higgs measurements. Eur. Phys. J. C 75, 440 (2015). arXiv:1502.04138
  39. 39.
    GAMBIT Scanner Workgroup: G.D. Martinez, J. McKay et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. arXiv:1705.07959
  40. 40.
    GAMBIT Models Workgroup: P. Athron, C. Balázs et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. arXiv:1705.07936
  41. 41.
    GAMBIT Flavour Workgroup: F.U. Bernlochner, M. Chrzaszcz et al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. arXiv:1705.07933
  42. 42.
    GAMBIT Dark Matter Workgroup: T. Bringmann, J. Conrad et al., DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. arXiv:1705.07920
  43. 43.
    ATLAS Collaboration: G. Aad et al., Search for direct third-generation squark pair production in final states with missing transverse momentum and two \(b\)-jets in \(\sqrt{s} =\) 8 TeV \(pp\) collisions with the atlas detector. JHEP 1310, 189 (2013). arXiv:1308.2631
  44. 44.
    ATLAS Collaboration: G. Aad et al., Search for direct top-squark pair production in final states with two leptons in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS detector. JHEP 1406, 124 (2014). arXiv:1403.4853
  45. 45.
    ATLAS Collaboration: G. Aad et al., Search for direct pair production of the top squark in all-hadronic final states in proton–proton collisions at \(\sqrt{s}=\) 8 TeV with the ATLAS detector. JHEP 1409, 015 (2014). arXiv:1406.1122
  46. 46.
    ATLAS Collaboration: Aad, Georges and others, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS detector. JHEP 05, 071 (2014). arXiv:1403.5294
  47. 47.
    ATLAS Collaboration: G. Aad et al., Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \(\sqrt{s} =\) 8 TeV \(pp\) collisions with the atlas detector. JHEP 1404, 169 (2014). arXiv:1402.7029
  48. 48.
    ATLAS Collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s}=\) 8 TeV \(pp\) collisions using \(\text{21} \text{fb }^{-1}\) of ATLAS data. ATLAS-CONF-2013-037, 2013Google Scholar
  49. 49.
    ATLAS Collaboration: G. Aad et al., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s}=\) 8 TeV proton–proton collision data. JHEP 09, 176 (2014). arXiv:1405.7875
  50. 50.
    CMS Collaboration: V. Khachatryan et al., Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and \(W\), \(Z\), and Higgs bosons in \(pp\) collisions at 8 TeV. Eur. Phys. J. C 74, 3036 (2014). arXiv:1405.7570
  51. 51.
    CMS Collaboration: V. Khachatryan et al., Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton–proton collisions at \(\sqrt{s} =\) 8 TeV. JHEP 06, 121 (2015). arXiv:1504.03198
  52. 52.
    CMS Collaboration, Search for the production of dark matter in association with top quark pairs in the di-lepton final state in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV. CMS-PAS-B2G-13-004 (2014)Google Scholar
  53. 53.
    CMS Collaboration, V. Khachatryan et al., Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at \(\sqrt{s} =\) 8 TeV. Eur. Phys. J. C 75, 235 (2015). arXiv:1408.3583
  54. 54.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175
  55. 55.
    T. Sjostrand, S. Ask et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). arXiv:1410.3012 ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 ADSCrossRefGoogle Scholar
  57. 57.
    P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY – a spectrum generator generator for supersymmetric models. Comput. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319 ADSCrossRefGoogle Scholar
  58. 58.
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145 ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP 07, 036 (2004). arXiv:hep-ph/0311123 ADSCrossRefGoogle Scholar
  60. 60.
    B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045 ADSCrossRefGoogle Scholar
  61. 61.
  62. 62.
  63. 63.
  64. 64.
  65. 65.
    A. Berlin, D. Hooper, S.D. McDermott, Simplified dark matter models for the galactic center gamma-ray excess. Phys. Rev. D 89, 115022 (2014). arXiv:1404.0022 ADSCrossRefGoogle Scholar
  66. 66.
    M.R. Buckley, D. Feld, D. Goncalves, Scalar simplified models for dark matter. Phys. Rev. D 91, 015017 (2015). arXiv:1410.6497 ADSCrossRefGoogle Scholar
  67. 67.
    ATLAS Collaboration, Further searches for squarks and gluinos in final states with jets and missing transverse momentum at \(\sqrt{s} =13\) TeV with the ATLAS detector. ATLAS-CONF-2016-078 (2016)Google Scholar
  68. 68.
    CMS Collaboration, Search for supersymmetry in events with jets and missing transverse momentum in proton–proton collisions at 13 TeV. CMS-PAS-SUS-16-014 (2016)Google Scholar
  69. 69.
    ATLAS: M. Aaboud et al., Search for new phenomena in a lepton plus high jet multiplicity final state with the ATLAS experiment using \(\sqrt{s} = 13\) Tev proton–proton collision data. arXiv:1704.08493
  70. 70.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51–103 (1997). arXiv:hep-ph/9610490 ADSCrossRefGoogle Scholar
  71. 71.
    W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD. arXiv:hep-ph/9611232
  72. 72.
    W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Stop production at hadron colliders. Nucl. Phys. B 515, 3–14 (1998). arXiv:hep-ph/9710451 ADSCrossRefGoogle Scholar
  73. 73.
    M. Beneke, J. Piclum, C. Schwinn, C. Wever, NNLL soft and Coulomb resummation for squark and gluino production at the LHC. JHEP 10, 054 (2016). arXiv:1607.07574
  74. 74.
    W. Beenakker, C. Borschensky, M. Krämer, A. Kulesza, E. Laenen, NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation. JHEP 12, 133 (2016). arXiv:1607.07741
  75. 75.
    A. Kulesza, L. Motyka, Threshold resummation for squark–antisquark and gluino-pair production at the LHC. Phys. Rev. Lett. 102, 111802 (2009). arXiv:0807.2405 ADSCrossRefGoogle Scholar
  76. 76.
    A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino–gluino and squark–antisquark pairs at the LHC. Phys. Rev. D 80, 095004 (2009). arXiv:0905.4749 ADSCrossRefGoogle Scholar
  77. 77.
    W. Beenakker, S. Brensing et al., Soft-gluon resummation for squark and gluino hadroproduction. JHEP 0912, 041 (2009). arXiv:0909.4418 ADSCrossRefGoogle Scholar
  78. 78.
    W. Beenakker, S. Brensing et al., Supersymmetric top and bottom squark production at hadron colliders. JHEP 08, 098 (2010). arXiv:1006.4771 ADSCrossRefzbMATHGoogle Scholar
  79. 79.
    W. Beenakker, S. Brensing et al., Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637–2664 (2011). arXiv:1105.1110 ADSCrossRefGoogle Scholar
  80. 80.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002 ADSCrossRefzbMATHGoogle Scholar
  81. 81.
    P.M. Nadolsky, H.-L. Lai et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 ADSCrossRefGoogle Scholar
  82. 82.
    C.G. Lester, M.A. Parker, M.J. White, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables. JHEP 01, 080 (2006). arXiv:hep-ph/0508143 ADSCrossRefGoogle Scholar
  83. 83.
    B.C. Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches. Eur. Phys. J. C 25, 113–123 (2002). arXiv:hep-ph/0202233 ADSCrossRefGoogle Scholar
  84. 84.
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project. Eur. Phys. J. C 46, 43–60 (2006). arXiv:hep-ph/0511344 ADSCrossRefGoogle Scholar
  85. 85.
    M. Cacciari, G.P. Salam, Pileup subtraction using jet areas. Phys. Lett. B 659, 119–126 (2008). arXiv:0707.1378 ADSCrossRefGoogle Scholar
  86. 86.
    Calibration of ATLAS b-tagging algorithms in dense jet environments. ATLAS-CONF-2016-001 (2016)Google Scholar
  87. 87.
    A. Buckley, J. Butterworth et al., Rivet user manual. Comput. Phys. Commun. 184, 2803–2819 (2013). arXiv:1003.0694 ADSCrossRefGoogle Scholar
  88. 88.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k(t)\) jet clustering algorithm. JHEP 0804, 063 (2008). arXiv:0802.1189 ADSCrossRefzbMATHGoogle Scholar
  89. 89.
    Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton–proton collision data. ATLAS-CONF-2014-032 (2014)Google Scholar
  90. 90.
    Electron identification measurements in ATLAS using \(\sqrt{s} = 13\) TeV data with 50 ns bunch spacing. ATL-PHYS-PUB-2015-041 (2015)Google Scholar
  91. 91.
    ATLAS Collaboration: G. Aad et al., Performance of missing transverse momentum reconstruction in proton–proton collisions at 7 TeV with ATLAS. Eur. Phys. J. C 72, 1844 (2012). arXiv:1108.5602
  92. 92.
    J. Conrad, O. Botner, A. Hallgren, C. Pérez de Los Heros, Including systematic uncertainties in confidence interval construction for Poisson statistics. Phys. Rev. D 67, 012002 (2003). arXiv:hep-ex/0202013 ADSCrossRefGoogle Scholar
  93. 93.
    P. Scott, J. Conrad et al., Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1. JCAP 1, 31 (2010). arXiv:0909.3300 ADSCrossRefGoogle Scholar
  94. 94.
    P. Scott, C. Savage, J. Edsjö, and the IceCube Collaboration: R. Abbasi et al., Use of event-level neutrino telescope data in global fits for theories of new physics. JCAP 11, 57 (2012). arXiv:1207.0810
  95. 95.
    IceCube Collaboration: M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. JCAP 04, 022 (2016). arXiv:1601.00653
  96. 96.
    CMS Collaboration, Simplified likelihood for the re-interpretation of public CMS results. CMS-NOTE-2017-001 (2017)Google Scholar
  97. 97.
    CMS Collaboration, Search for new physics in the all-hadronic final state with the MT2 variable. CMS-PAS-SUS-16-036 (2017)Google Scholar
  98. 98.
    P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 0407, 008 (2004). arXiv:astro-ph/0406204 ADSCrossRefGoogle Scholar
  99. 99.
    G.Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs4.1: two dark matter candidates. Comput. Phys. Commun. 192, 322–329 (2015). arXiv:1407.6129
  100. 100.
    OPAL Collaboration: G. Abbiendi et al., Search for anomalous production of acoplanar di-lepton events in \(e^+ e^-\) collisions at \(\sqrt{s} =\) 183 GeV and 189 GeV. Eur. Phys. J. C 14, 51–71 (2000). arXiv:hep-ex/9909052
  101. 101.
    S. Dawson, E. Eichten, C. Quigg, Search for supersymmetric particles in hadron–hadron collisions. Phys. Rev. D 31, 1581 (1985)ADSCrossRefGoogle Scholar
  102. 102.
    A. Bartl, H. Fraas, W. Majerotto, Gaugino–Higgsino mixing in selectron and sneutrino pair production. Z. Phys. C 34, 411 (1987)ADSCrossRefGoogle Scholar
  103. 103.
    A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Polon. 38, 635–644 (2007). arXiv:hep-ph/0609292 ADSGoogle Scholar
  104. 104.
    D. Shepard, A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, ACM ’68 (ACM, New York, 1968), pp 517–524Google Scholar
  105. 105.
    A. Bartl, H. Fraas, W. Majerotto, Production and decay of neutralinos in \(e^+ e^-\) annihilation. Nucl. Phys. B 278, 1 (1986)ADSCrossRefGoogle Scholar
  106. 106.
    A. Bartl, H. Fraas, W. Majerotto, Signatures of chargino production in \(e^+ e^-\) collisions. Z. Phys. C 30, 441 (1986)ADSCrossRefGoogle Scholar
  107. 107.
    H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata, ISAJET 7.48: a Monte Carlo event generator for \(pp\), anti-\(p\), \(p\), and \(e^+\) \(e^-\) reactions. arXiv:hep-ph/0001086
  108. 108.
    DELPHI Collaboration, OPAL Collaboration, ALEPH Collaboration, LEP Working Group for Higgs Boson Searches and L3 Collaboration: S. Schael et al., Search for neutral MSSM Higgs Bosons at LEP. Eur. Phys. J. C 47, 547–587 (2006). arXiv:hep-ex/0602042
  109. 109.
    J.M. Cline, K. Kainulainen, P. Scott, C. Weniger, Update on scalar singlet dark matter. Phys. Rev. D 88, 055025 (2013). arXiv:1306.4710 ADSCrossRefGoogle Scholar
  110. 110.
    Collaboration: P. Athron, C. Balázs et al., Status of the scalar singlet dark matter model. Eur. Phys. J. C 77, 568 (2017).  https://doi.org/10.1140/epjc/s10052-017-5113-1
  111. 111.
    S. Ask et al., From Lagrangians to events: computer tutorial at the MC4BSM-2012 workshop. arXiv:1209.0297

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Authors and Affiliations

  • The GAMBIT Scanner Workgroup:
  • Csaba Balázs
    • 1
    • 2
  • Andy Buckley
    • 3
  • Lars A. Dal
    • 4
  • Ben Farmer
    • 5
  • Paul Jackson
    • 2
    • 6
  • Abram Krislock
    • 4
  • Anders Kvellestad
    • 7
  • Daniel Murnane
    • 2
    • 6
  • Antje Putze
    • 8
  • Are Raklev
    • 4
  • Christopher Rogan
    • 9
  • Aldo Saavedra
    • 2
    • 10
  • Pat Scott
    • 11
  • Christoph Weniger
    • 12
  • Martin White
    • 2
    • 6
    Email author
  1. 1.School of Physics and AstronomyMonash UniversityMelbourneAustralia
  2. 2.Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia
  3. 3.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  4. 4.Department of PhysicsUniversity of OsloOsloNorway
  5. 5.Oskar Klein Centre for Cosmoparticle PhysicsAlbaNova University CentreStockholmSweden
  6. 6.Department of PhysicsUniversity of AdelaideAdelaideAustralia
  7. 7.NORDITAStockholmSweden
  8. 8.LAPThUniversité de SavoieAnnecy-le-VieuxFrance
  9. 9.Department of PhysicsHarvard UniversityCambridgeUSA
  10. 10.Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of PhysicsThe University of SydneySydneyAustralia
  11. 11.Department of PhysicsImperial College London, Blackett LaboratoryLondonUK
  12. 12.GRAPPA, Institute of PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations