Advertisement

Measurement of D-meson production at mid-rapidity in pp collisions at \({\sqrt{s}=7}\) TeV

  • S. Acharya
  • D. Adamová
  • M. M. Aggarwal
  • G. Aglieri Rinella
  • M. Agnello
  • N. Agrawal
  • Z. Ahammed
  • N. Ahmad
  • S. U. Ahn
  • S. Aiola
  • A. Akindinov
  • S. N. Alam
  • D. S. D. Albuquerque
  • D. Aleksandrov
  • B. Alessandro
  • D. Alexandre
  • R. Alfaro Molina
  • A. Alici
  • A. Alkin
  • J. Alme
  • T. Alt
  • I. Altsybeev
  • C. Alves Garcia Prado
  • M. An
  • C. Andrei
  • H. A. Andrews
  • A. Andronic
  • V. Anguelov
  • C. Anson
  • T. Antičić
  • F. Antinori
  • P. Antonioli
  • R. Anwar
  • L. Aphecetche
  • H. Appelshäuser
  • S. Arcelli
  • R. Arnaldi
  • O. W. Arnold
  • I. C. Arsene
  • M. Arslandok
  • B. Audurier
  • A. Augustinus
  • R. Averbeck
  • M. D. Azmi
  • A. Badalà
  • Y. W. Baek
  • S. Bagnasco
  • R. Bailhache
  • R. Bala
  • A. Baldisseri
  • M. Ball
  • R. C. Baral
  • A. M. Barbano
  • R. Barbera
  • F. Barile
  • L. Barioglio
  • G. G. Barnaföldi
  • L. S. Barnby
  • V. Barret
  • P. Bartalini
  • K. Barth
  • J. Bartke
  • E. Bartsch
  • M. Basile
  • N. Bastid
  • S. Basu
  • B. Bathen
  • G. Batigne
  • A. Batista Camejo
  • B. Batyunya
  • P. C. Batzing
  • I. G. Bearden
  • H. Beck
  • C. Bedda
  • N. K. Behera
  • I. Belikov
  • F. Bellini
  • H. Bello Martinez
  • R. Bellwied
  • L. G. E. Beltran
  • V. Belyaev
  • G. Bencedi
  • S. Beole
  • A. Bercuci
  • Y. Berdnikov
  • D. Berenyi
  • R. A. Bertens
  • D. Berzano
  • L. Betev
  • A. Bhasin
  • I. R. Bhat
  • A. K. Bhati
  • B. Bhattacharjee
  • J. Bhom
  • L. Bianchi
  • N. Bianchi
  • C. Bianchin
  • J. Bielčík
  • J. Bielčíková
  • A. Bilandzic
  • G. Biro
  • R. Biswas
  • S. Biswas
  • J. T. Blair
  • D. Blau
  • C. Blume
  • G. Boca
  • F. Bock
  • A. Bogdanov
  • L. Boldizsár
  • M. Bombara
  • G. Bonomi
  • M. Bonora
  • J. Book
  • H. Borel
  • A. Borissov
  • M. Borri
  • E. Botta
  • C. Bourjau
  • P. Braun-Munzinger
  • M. Bregant
  • T. A. Broker
  • T. A. Browning
  • M. Broz
  • E. J. Brucken
  • E. Bruna
  • G. E. Bruno
  • D. Budnikov
  • H. Buesching
  • S. Bufalino
  • P. Buhler
  • S. A. I. Buitron
  • P. Buncic
  • O. Busch
  • Z. Buthelezi
  • J. B. Butt
  • J. T. Buxton
  • J. Cabala
  • D. Caffarri
  • H. Caines
  • A. Caliva
  • E. Calvo Villar
  • P. Camerini
  • A. A. Capon
  • F. Carena
  • W. Carena
  • F. Carnesecchi
  • J. Castillo Castellanos
  • A. J. Castro
  • E. A. R. Casula
  • C. Ceballos Sanchez
  • P. Cerello
  • B. Chang
  • S. Chapeland
  • M. Chartier
  • J. L. Charvet
  • S. Chattopadhyay
  • S. Chattopadhyay
  • A. Chauvin
  • M. Cherney
  • C. Cheshkov
  • B. Cheynis
  • V. Chibante Barroso
  • D. D. Chinellato
  • S. Cho
  • P. Chochula
  • K. Choi
  • M. Chojnacki
  • S. Choudhury
  • P. Christakoglou
  • C. H. Christensen
  • P. Christiansen
  • T. Chujo
  • S. U. Chung
  • C. Cicalo
  • L. Cifarelli
  • F. Cindolo
  • J. Cleymans
  • F. Colamaria
  • D. Colella
  • A. Collu
  • M. Colocci
  • M. Concas
  • G. Conesa Balbastre
  • Z. Conesa del Valle
  • M. E. Connors
  • J. G. Contreras
  • T. M. Cormier
  • Y. Corrales Morales
  • I. Cortés Maldonado
  • P. Cortese
  • M. R. Cosentino
  • F. Costa
  • S. Costanza
  • J. Crkovská
  • P. Crochet
  • E. Cuautle
  • L. Cunqueiro
  • T. Dahms
  • A. Dainese
  • M. C. Danisch
  • A. Danu
  • D. Das
  • I. Das
  • S. Das
  • A. Dash
  • S. Dash
  • S. De
  • A. De Caro
  • G. de Cataldo
  • C. de Conti
  • J. de Cuveland
  • A. De Falco
  • D. De Gruttola
  • N. De Marco
  • S. De Pasquale
  • R. D. De Souza
  • H. F. Degenhardt
  • A. Deisting
  • A. Deloff
  • C. Deplano
  • P. Dhankher
  • D. Di Bari
  • A. Di Mauro
  • P. Di Nezza
  • B. Di Ruzza
  • M. A. Diaz Corchero
  • T. Dietel
  • P. Dillenseger
  • R. Divià
  • Ø. Djuvsland
  • A. Dobrin
  • D. Domenicis Gimenez
  • B. Dönigus
  • O. Dordic
  • T. Drozhzhova
  • A. K. Dubey
  • A. Dubla
  • L. Ducroux
  • A. K. Duggal
  • P. Dupieux
  • R. J. Ehlers
  • D. Elia
  • E. Endress
  • H. Engel
  • E. Epple
  • B. Erazmus
  • F. Erhardt
  • B. Espagnon
  • S. Esumi
  • G. Eulisse
  • J. Eum
  • D. Evans
  • S. Evdokimov
  • L. Fabbietti
  • J. Faivre
  • A. Fantoni
  • M. Fasel
  • L. Feldkamp
  • A. Feliciello
  • G. Feofilov
  • J. Ferencei
  • A. Fernández Téllez
  • E. G. Ferreiro
  • A. Ferretti
  • A. Festanti
  • V. J. G. Feuillard
  • J. Figiel
  • M. A. S. Figueredo
  • S. Filchagin
  • D. Finogeev
  • F. M. Fionda
  • E. M. Fiore
  • M. Floris
  • S. Foertsch
  • P. Foka
  • S. Fokin
  • E. Fragiacomo
  • A. Francescon
  • A. Francisco
  • U. Frankenfeld
  • G. G. Fronze
  • U. Fuchs
  • C. Furget
  • A. Furs
  • M. Fusco Girard
  • J. J. Gaardhøje
  • M. Gagliardi
  • A. M. Gago
  • K. Gajdosova
  • M. Gallio
  • C. D. Galvan
  • P. Ganoti
  • C. Gao
  • C. Garabatos
  • E. Garcia-Solis
  • K. Garg
  • P. Garg
  • C. Gargiulo
  • P. Gasik
  • E. F. Gauger
  • M. B. Gay Ducati
  • M. Germain
  • P. Ghosh
  • S. K. Ghosh
  • P. Gianotti
  • P. Giubellino
  • P. Giubilato
  • E. Gladysz-Dziadus
  • P. Glässel
  • D. M. Goméz Coral
  • A. Gomez Ramirez
  • A. S. Gonzalez
  • V. Gonzalez
  • P. González-Zamora
  • S. Gorbunov
  • L. Görlich
  • S. Gotovac
  • V. Grabski
  • L. K. Graczykowski
  • K. L. Graham
  • L. Greiner
  • A. Grelli
  • C. Grigoras
  • V. Grigoriev
  • A. Grigoryan
  • S. Grigoryan
  • N. Grion
  • J. M. Gronefeld
  • F. Grosa
  • J. F. Grosse-Oetringhaus
  • R. Grosso
  • L. Gruber
  • F. R. Grull
  • F. Guber
  • R. Guernane
  • B. Guerzoni
  • K. Gulbrandsen
  • T. Gunji
  • A. Gupta
  • R. Gupta
  • I. B. Guzman
  • R. Haake
  • C. Hadjidakis
  • H. Hamagaki
  • G. Hamar
  • J. C. Hamon
  • J. W. Harris
  • A. Harton
  • D. Hatzifotiadou
  • S. Hayashi
  • S. T. Heckel
  • E. Hellbär
  • H. Helstrup
  • A. Herghelegiu
  • G. Herrera Corral
  • F. Herrmann
  • B. A. Hess
  • K. F. Hetland
  • H. Hillemanns
  • B. Hippolyte
  • J. Hladky
  • B. Hohlweger
  • D. Horak
  • R. Hosokawa
  • P. Hristov
  • C. Hughes
  • T. J. Humanic
  • N. Hussain
  • T. Hussain
  • D. Hutter
  • D. S. Hwang
  • R. Ilkaev
  • M. Inaba
  • M. Ippolitov
  • M. Irfan
  • V. Isakov
  • M. S. Islam
  • M. Ivanov
  • V. Ivanov
  • V. Izucheev
  • B. Jacak
  • N. Jacazio
  • P. M. Jacobs
  • M. B. Jadhav
  • S. Jadlovska
  • J. Jadlovsky
  • S. Jaelani
  • C. Jahnke
  • M. J. Jakubowska
  • M. A. Janik
  • P. H. S. Y. Jayarathna
  • C. Jena
  • S. Jena
  • M. Jercic
  • R. T. Jimenez Bustamante
  • P. G. Jones
  • A. Jusko
  • P. Kalinak
  • A. Kalweit
  • J. H. Kang
  • V. Kaplin
  • S. Kar
  • A. Karasu Uysal
  • O. Karavichev
  • T. Karavicheva
  • L. Karayan
  • E. Karpechev
  • U. Kebschull
  • R. Keidel
  • D. L. D. Keijdener
  • M. Keil
  • B. Ketzer
  • M. Mohisin Khan
  • P. Khan
  • S. A. Khan
  • A. Khanzadeev
  • Y. Kharlov
  • A. Khatun
  • A. Khuntia
  • M. M. Kielbowicz
  • B. Kileng
  • D. Kim
  • D. W. Kim
  • D. J. Kim
  • H. Kim
  • J. S. Kim
  • J. Kim
  • M. Kim
  • M. Kim
  • S. Kim
  • T. Kim
  • S. Kirsch
  • I. Kisel
  • S. Kiselev
  • A. Kisiel
  • G. Kiss
  • J. L. Klay
  • C. Klein
  • J. Klein
  • C. Klein-Bösing
  • S. Klewin
  • A. Kluge
  • M. L. Knichel
  • A. G. Knospe
  • C. Kobdaj
  • M. Kofarago
  • T. Kollegger
  • A. Kolojvari
  • V. Kondratiev
  • N. Kondratyeva
  • E. Kondratyuk
  • A. Konevskikh
  • M. Kopcik
  • M. Kour
  • C. Kouzinopoulos
  • O. Kovalenko
  • V. Kovalenko
  • M. Kowalski
  • G. Koyithatta Meethaleveedu
  • I. Králik
  • A. Kravčáková
  • M. Krivda
  • F. Krizek
  • E. Kryshen
  • M. Krzewicki
  • A. M. Kubera
  • V. Kučera
  • C. Kuhn
  • P. G. Kuijer
  • A. Kumar
  • J. Kumar
  • L. Kumar
  • S. Kumar
  • S. Kundu
  • P. Kurashvili
  • A. Kurepin
  • A. B. Kurepin
  • A. Kuryakin
  • S. Kushpil
  • M. J. Kweon
  • Y. Kwon
  • S. L. La Pointe
  • P. La Rocca
  • C. Lagana Fernandes
  • I. Lakomov
  • R. Langoy
  • K. Lapidus
  • C. Lara
  • A. Lardeux
  • A. Lattuca
  • E. Laudi
  • R. Lavicka
  • L. Lazaridis
  • R. Lea
  • L. Leardini
  • S. Lee
  • F. Lehas
  • S. Lehner
  • J. Lehrbach
  • R. C. Lemmon
  • V. Lenti
  • E. Leogrande
  • I. León Monzón
  • P. Lévai
  • S. Li
  • X. Li
  • J. Lien
  • R. Lietava
  • S. Lindal
  • V. Lindenstruth
  • C. Lippmann
  • M. A. Lisa
  • V. Litichevskyi
  • H. M. Ljunggren
  • W. J. Llope
  • D. F. Lodato
  • P. I. Loenne
  • V. Loginov
  • C. Loizides
  • P. Loncar
  • X. Lopez
  • E. López Torres
  • A. Lowe
  • P. Luettig
  • M. Lunardon
  • G. Luparello
  • M. Lupi
  • T. H. Lutz
  • A. Maevskaya
  • M. Mager
  • S. Mahajan
  • S. M. Mahmood
  • A. Maire
  • R. D. Majka
  • M. Malaev
  • I. Maldonado Cervantes
  • L. Malinina
  • D. Mal’Kevich
  • P. Malzacher
  • A. Mamonov
  • V. Manko
  • F. Manso
  • V. Manzari
  • Y. Mao
  • M. Marchisone
  • J. Mareš
  • G. V. Margagliotti
  • A. Margotti
  • J. Margutti
  • A. Marín
  • C. Markert
  • M. Marquard
  • N. A. Martin
  • P. Martinengo
  • J. A. L. Martinez
  • M. I. Martínez
  • G. Martínez García
  • M. Martinez Pedreira
  • A. Mas
  • S. Masciocchi
  • M. Masera
  • A. Masoni
  • A. Mastroserio
  • A. M. Mathis
  • A. Matyja
  • C. Mayer
  • J. Mazer
  • M. Mazzilli
  • M. A. Mazzoni
  • F. Meddi
  • Y. Melikyan
  • A. Menchaca-Rocha
  • E. Meninno
  • J. Mercado Pérez
  • M. Meres
  • S. Mhlanga
  • Y. Miake
  • M. M. Mieskolainen
  • D. L. Mihaylov
  • K. Mikhaylov
  • L. Milano
  • J. Milosevic
  • A. Mischke
  • A. N. Mishra
  • D. Miśkowiec
  • J. Mitra
  • C. M. Mitu
  • N. Mohammadi
  • B. Mohanty
  • E. Montes
  • D. A. Moreira De Godoy
  • L. A. P. Moreno
  • S. Moretto
  • A. Morreale
  • A. Morsch
  • V. Muccifora
  • E. Mudnic
  • D. Mühlheim
  • S. Muhuri
  • M. Mukherjee
  • J. D. Mulligan
  • M. G. Munhoz
  • K. Münning
  • R. H. Munzer
  • H. Murakami
  • S. Murray
  • L. Musa
  • J. Musinsky
  • C. J. Myers
  • B. Naik
  • R. Nair
  • B. K. Nandi
  • R. Nania
  • E. Nappi
  • M. U. Naru
  • H. Natal da Luz
  • C. Nattrass
  • S. R. Navarro
  • K. Nayak
  • R. Nayak
  • T. K. Nayak
  • S. Nazarenko
  • A. Nedosekin
  • R. A. Negrao De Oliveira
  • L. Nellen
  • S. V. Nesbo
  • F. Ng
  • M. Nicassio
  • M. Niculescu
  • J. Niedziela
  • B. S. Nielsen
  • S. Nikolaev
  • S. Nikulin
  • V. Nikulin
  • F. Noferini
  • P. Nomokonov
  • G. Nooren
  • J. C. C. Noris
  • J. Norman
  • A. Nyanin
  • J. Nystrand
  • H. Oeschler
  • S. Oh
  • A. Ohlson
  • T. Okubo
  • L. Olah
  • J. Oleniacz
  • A. C. Oliveira Da Silva
  • M. H. Oliver
  • J. Onderwaater
  • C. Oppedisano
  • R. Orava
  • M. Oravec
  • A. Ortiz Velasquez
  • A. Oskarsson
  • J. Otwinowski
  • K. Oyama
  • Y. Pachmayer
  • V. Pacik
  • D. Pagano
  • P. Pagano
  • G. Paić
  • P. Palni
  • J. Pan
  • A. K. Pandey
  • S. Panebianco
  • V. Papikyan
  • G. S. Pappalardo
  • P. Pareek
  • J. Park
  • W. J. Park
  • S. Parmar
  • A. Passfeld
  • S. P. Pathak
  • V. Paticchio
  • R. N. Patra
  • B. Paul
  • H. Pei
  • T. Peitzmann
  • X. Peng
  • L. G. Pereira
  • H. Pereira Da Costa
  • D. Peresunko
  • E. Perez Lezama
  • V. Peskov
  • Y. Pestov
  • V. Petráček
  • V. Petrov
  • M. Petrovici
  • C. Petta
  • R. P. Pezzi
  • S. Piano
  • M. Pikna
  • P. Pillot
  • L. O. D. L. Pimentel
  • O. Pinazza
  • L. Pinsky
  • D. B. Piyarathna
  • M. Płoskoń
  • M. Planinic
  • J. Pluta
  • S. Pochybova
  • P. L. M. Podesta-Lerma
  • M. G. Poghosyan
  • B. Polichtchouk
  • N. Poljak
  • W. Poonsawat
  • A. Pop
  • H. Poppenborg
  • S. Porteboeuf-Houssais
  • J. Porter
  • J. Pospisil
  • V. Pozdniakov
  • S. K. Prasad
  • R. Preghenella
  • F. Prino
  • C. A. Pruneau
  • I. Pshenichnov
  • M. Puccio
  • G. Puddu
  • P. Pujahari
  • V. Punin
  • J. Putschke
  • H. Qvigstad
  • A. Rachevski
  • S. Raha
  • S. Rajput
  • J. Rak
  • A. Rakotozafindrabe
  • L. Ramello
  • F. Rami
  • D. B. Rana
  • R. Raniwala
  • S. Raniwala
  • S. S. Räsänen
  • B. T. Rascanu
  • D. Rathee
  • V. Ratza
  • I. Ravasenga
  • K. F. Read
  • K. Redlich
  • A. Rehman
  • P. Reichelt
  • F. Reidt
  • X. Ren
  • R. Renfordt
  • A. R. Reolon
  • A. Reshetin
  • K. Reygers
  • V. Riabov
  • R. A. Ricci
  • T. Richert
  • M. Richter
  • P. Riedler
  • W. Riegler
  • F. Riggi
  • C. Ristea
  • M. Rodríguez Cahuantzi
  • K. Røed
  • E. Rogochaya
  • D. Rohr
  • D. Röhrich
  • P. S. Rokita
  • F. Ronchetti
  • L. Ronflette
  • P. Rosnet
  • A. Rossi
  • A. Rotondi
  • F. Roukoutakis
  • A. Roy
  • C. Roy
  • P. Roy
  • A. J. Rubio Montero
  • O. V. Rueda
  • R. Rui
  • R. Russo
  • A. Rustamov
  • E. Ryabinkin
  • Y. Ryabov
  • A. Rybicki
  • S. Saarinen
  • S. Sadhu
  • S. Sadovsky
  • K. Šafařík
  • S. K. Saha
  • B. Sahlmuller
  • B. Sahoo
  • P. Sahoo
  • R. Sahoo
  • S. Sahoo
  • P. K. Sahu
  • J. Saini
  • S. Sakai
  • M. A. Saleh
  • J. Salzwedel
  • S. Sambyal
  • V. Samsonov
  • A. Sandoval
  • D. Sarkar
  • N. Sarkar
  • P. Sarma
  • M. H. P. Sas
  • E. Scapparone
  • F. Scarlassara
  • R. P. Scharenberg
  • H. S. Scheid
  • C. Schiaua
  • R. Schicker
  • C. Schmidt
  • H. R. Schmidt
  • M. O. Schmidt
  • M. Schmidt
  • S. Schuchmann
  • J. Schukraft
  • Y. Schutz
  • K. Schwarz
  • K. Schweda
  • G. Scioli
  • E. Scomparin
  • R. Scott
  • M. Šefčík
  • J. E. Seger
  • Y. Sekiguchi
  • D. Sekihata
  • I. Selyuzhenkov
  • K. Senosi
  • S. Senyukov
  • E. Serradilla
  • P. Sett
  • A. Sevcenco
  • A. Shabanov
  • A. Shabetai
  • O. Shadura
  • R. Shahoyan
  • A. Shangaraev
  • A. Sharma
  • A. Sharma
  • M. Sharma
  • M. Sharma
  • N. Sharma
  • A. I. Sheikh
  • K. Shigaki
  • Q. Shou
  • K. Shtejer
  • Y. Sibiriak
  • S. Siddhanta
  • K. M. Sielewicz
  • T. Siemiarczuk
  • D. Silvermyr
  • C. Silvestre
  • G. Simatovic
  • G. Simonetti
  • R. Singaraju
  • R. Singh
  • V. Singhal
  • T. Sinha
  • B. Sitar
  • M. Sitta
  • T. B. Skaali
  • M. Slupecki
  • N. Smirnov
  • R. J. M. Snellings
  • T. W. Snellman
  • J. Song
  • M. Song
  • F. Soramel
  • S. Sorensen
  • F. Sozzi
  • E. Spiriti
  • I. Sputowska
  • B. K. Srivastava
  • J. Stachel
  • I. Stan
  • P. Stankus
  • E. Stenlund
  • J. H. Stiller
  • D. Stocco
  • P. Strmen
  • A. A. P. Suaide
  • T. Sugitate
  • C. Suire
  • M. Suleymanov
  • M. Suljic
  • R. Sultanov
  • M. Šumbera
  • S. Sumowidagdo
  • K. Suzuki
  • S. Swain
  • A. Szabo
  • I. Szarka
  • A. Szczepankiewicz
  • M. Szymanski
  • U. Tabassam
  • J. Takahashi
  • G. J. Tambave
  • N. Tanaka
  • M. Tarhini
  • M. Tariq
  • M. G. Tarzila
  • A. Tauro
  • G. Tejeda Muñoz
  • A. Telesca
  • K. Terasaki
  • C. Terrevoli
  • B. Teyssier
  • D. Thakur
  • S. Thakur
  • D. Thomas
  • R. Tieulent
  • A. Tikhonov
  • A. R. Timmins
  • A. Toia
  • S. Tripathy
  • S. Trogolo
  • G. Trombetta
  • V. Trubnikov
  • W. H. Trzaska
  • B. A. Trzeciak
  • T. Tsuji
  • A. Tumkin
  • R. Turrisi
  • T. S. Tveter
  • K. Ullaland
  • E. N. Umaka
  • A. Uras
  • G. L. Usai
  • A. Utrobicic
  • M. Vala
  • J. Van Der Maarel
  • J. W. Van Hoorne
  • M. van Leeuwen
  • T. Vanat
  • P. Vande Vyvre
  • D. Varga
  • A. Vargas
  • M. Vargyas
  • R. Varma
  • M. Vasileiou
  • A. Vasiliev
  • A. Vauthier
  • O. Vázquez Doce
  • V. Vechernin
  • A. M. Veen
  • A. Velure
  • E. Vercellin
  • S. Vergara Limón
  • R. Vernet
  • R. Vértesi
  • L. Vickovic
  • S. Vigolo
  • J. Viinikainen
  • Z. Vilakazi
  • O. Villalobos Baillie
  • A. Villatoro Tello
  • A. Vinogradov
  • L. Vinogradov
  • T. Virgili
  • V. Vislavicius
  • A. Vodopyanov
  • M. A. Völkl
  • K. Voloshin
  • S. A. Voloshin
  • G. Volpe
  • B. von Haller
  • I. Vorobyev
  • D. Voscek
  • D. Vranic
  • J. Vrláková
  • B. Wagner
  • J. Wagner
  • H. Wang
  • M. Wang
  • D. Watanabe
  • Y. Watanabe
  • M. Weber
  • S. G. Weber
  • D. F. Weiser
  • J. P. Wessels
  • U. Westerhoff
  • A. M. Whitehead
  • J. Wiechula
  • J. Wikne
  • G. Wilk
  • J. Wilkinson
  • G. A. Willems
  • M. C. S. Williams
  • B. Windelband
  • W. E. Witt
  • S. Yalcin
  • P. Yang
  • S. Yano
  • Z. Yin
  • H. Yokoyama
  • I.-K. Yoo
  • J. H. Yoon
  • V. Yurchenko
  • V. Zaccolo
  • A. Zaman
  • C. Zampolli
  • H. J. C. Zanoli
  • N. Zardoshti
  • A. Zarochentsev
  • P. Závada
  • N. Zaviyalov
  • H. Zbroszczyk
  • M. Zhalov
  • H. Zhang
  • X. Zhang
  • Y. Zhang
  • C. Zhang
  • Z. Zhang
  • C. Zhao
  • N. Zhigareva
  • D. Zhou
  • Y. Zhou
  • Z. Zhou
  • H. Zhu
  • J. Zhu
  • X. Zhu
  • A. Zichichi
  • A. Zimmermann
  • M. B. Zimmermann
  • S. Zimmermann
  • G. Zinovjev
  • J. Zmeskal
  • ALICE Collaboration
Open Access
Regular Article - Experimental Physics

Abstract

The production cross sections for prompt charmed mesons \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) were measured at mid-rapidity in proton–proton collisions at a centre-of-mass energy \(\sqrt{s}=7~{\mathrm {TeV}}\) with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays \(\mathrm{D}^0 \rightarrow \mathrm{K}^-\pi ^+\), \(\mathrm{D}^+\rightarrow \mathrm{K}^-\pi ^+\pi ^+\), \(\mathrm{D}^{*+} \rightarrow \mathrm{D}^0 \pi ^+\), \(\mathrm{D_s^{+}\rightarrow \phi \pi ^+\rightarrow K^-K^+\pi ^+}\), and their charge conjugates.With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (\(p_\mathrm{T}\)) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total \(\mathrm{c}{\overline{\mathrm{c}}}\) production cross section is likewise improved. The measured \(p_\mathrm{T}\)-differential cross sections are compared with the results of three perturbative QCD calculations.

1 Introduction

In high-energy hadronic collisions heavy quarks are produced by hard scatterings between partons of the two incoming hadrons. The production cross section of hadrons with charm or beauty quarks is calculated in the framework of Quantum Chromodynamics (QCD) and factorised as a convolution of the hard scattering cross sections at partonic level, the parton distribution functions (PDFs) of the incoming hadrons and the non-perturbative fragmentation functions of heavy quarks to heavy-flavour hadrons. Factorisation is implemented in terms of the squared momentum transfer \(Q^2\) (collinear factorisation) [1] or of the partonic transverse momentum \(k_\mathrm{T}\) [2]. The hard scattering cross section is expanded in a perturbative series in powers of the strong coupling constant \(\alpha _\mathrm{s}\). State-of-the-art calculations based on collinear factorisation implement a perturbative expansion up to next-to-leading order (NLO) in \(\alpha _\mathrm{s}\), such as the general-mass variable flavour number scheme (GM-VFNS) [3, 4, 5], or next-to-leading order in \(\alpha _\mathrm{s}\) with all-order resummation of the logarithms of \(p_\mathrm{T}/m_Q\) (FONLL) [6, 7], where \(p_\mathrm{T}\) and \(m_Q\) are the heavy-quark transverse momentum and mass, respectively. Calculations based on \(k_\mathrm{T}\) factorisation exist only at leading order (LO) in \(\alpha _\mathrm{s}\) [2, 8, 9]. All these calculations provide a good description of the production cross sections of D and B mesons in proton–proton (and proton–antiproton) collisions at centre-of-mass energies from 0.2 to 13 TeV over a wide \(p_\mathrm{T}\) range at both central and forward rapidities (see e.g. [10] and references therein). In the case of charm production the uncertainties of the theoretical calculations, dominated by the perturbative scale uncertainties, are significantly larger than the experimental ones [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, it was recently pointed out that in ratios of cross sections at different LHC energies and in different rapidity intervals the perturbative uncertainty becomes subdominant with respect to the uncertainty on the PDFs [22], thus making the measurement sensitive in particular to the gluon PDF at values of Bjorken-x down to \(10^{-5}\) when the D-meson \(p_\mathrm{T}\) approaches 0. This represents a strong motivation for pursuing precise measurements of D-meson production in pp collisions at LHC energies. Charm hadroproduction measurements are also required for cosmic-ray and neutrino astrophysics, where high-energy neutrinos from the decay of charmed hadrons produced in particle showers in the atmosphere constitute an important background for neutrinos from astrophysical sources [23, 24, 25, 26].

In the context of the heavy-ion programme at the LHC, D-meson measurements in pp collisions represent an essential reference for the study of effects induced by cold and hot strongly-interacting matter in the case of proton–nucleus and nucleus–nucleus collisions (see e.g. the recent reviews [10, 27]). In addition, the \(\mathrm{c}{\overline{\mathrm{c}}}\) production cross section per nucleon–nucleon collision is a basic ingredient for the determination of the amount of charmonium production by (re)generation in a quark-gluon plasma [28, 29, 30], a mechanism that is supported by \(\mathrm{J}/\psi \) measurements in nucleus–nucleus collisions at the LHC [31, 32]. A precise measurement of the \(\mathrm{c}{\overline{\mathrm{c}}}\) production cross section in pp collisions would enable a more stringent comparison of model calculations with data.

In this article, we report the measurement of the production cross sections of prompt \(\mathrm{D}^0\), \(\mathrm{D}^+\), \(\mathrm{D}^{*+}\) and \(\mathrm{D}_s^+\) mesons (as average of particles and anti-particles), and of their ratios, in pp collisions at the centre-of-mass energy \(\sqrt{s}=7~{\mathrm {TeV}}\) using the ALICE detector at the LHC. The measurements cover mid-rapidity (\(|y|<0.5\)) and the intervals \(0<p_\mathrm{T}<36~{\mathrm {GeV}}/c\) for \(\mathrm{D}^0\) mesons, \(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\) for \(\mathrm{D}^+\) and \(\mathrm{D}^{*+}\)mesons, and \(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\) for \(\mathrm{D}^+_s\) mesons. The measurements cover complementary intervals in \(p_\mathrm{T}\) and rapidity with respect to those published by the ATLAS (\(3.5<p_\mathrm{T}<100~{\mathrm {GeV}}/c\), \(|\eta |<2.1\) [13]) and LHCb (\(0<p_\mathrm{T}<8~{\mathrm {GeV}}/c\), \(2<y<4.5\) [19]) Collaborations at the same centre-of-mass energy. In comparison to previous ALICE publications based on the same data sample [14, 16, 17], the present results have a significantly extended \(p_\mathrm{T}\) coverage (for example, the previous coverage for \(\mathrm{D}^0\) mesons was 0–16 \({\mathrm {GeV}}/c\)) and total uncertainties reduced by a factor of about two. These improvements have several sources: (i) changes in the detector calibration, alignment and track reconstruction algorithm, which resulted in better \(p_\mathrm{T}\) resolution, thus higher signal-to-background ratio; (ii) optimization of the D-meson selection procedure; (iii) refinements in the estimation of the systematic uncertainties, which is now more data-driven; (iv) a data sample with 20% larger integrated luminosity.

The article is organised as follows: the data sample and the analysis procedure are described in Sect. 2, the estimation of the systematic uncertainties is discussed in Sect. 3 and the results are presented and compared to theoretical calculations in Sect. 4.

2 Analysis

A complete description of the ALICE experimental setup and of its performance can be found in [33, 34]. D mesons were reconstructed at mid-rapidity from their decay products, using the tracking and particle identification capabilities of the ALICE central barrel detectors located within a large solenoidal magnet, providing a field \(\hbox {B} = 0.5~{\mathrm {T}}\) parallel to the beam line (z axis of the ALICE reference frame). The innermost detector, the Inner Tracking System (ITS), is used to track charged particles within the pseudorapidity interval \(|\eta | < 0.9\) as well as for primary and secondary vertex reconstruction. It consists of six cylindrical layers equipped with Silicon Pixel Detectors (SPD), Silicon Drift Detectors (SDD) and Silicon Strip Detectors (SSD) from inner to outer layers. The ITS provides a resolution on the track impact parameter \(d_0\) to the primary vertex in the transverse plane (\(r\varphi \)) better than 75 \(\upmu \)m for transverse momentum \(p_\mathrm{T}>1~{\mathrm {GeV}}/c\). As compared to previous publications based on the same data sample [14, 16], the alignment of the ITS sensor modules was improved and a new procedure for the calibration of the drift velocity and of the non-uniformities of the drift field in the SDD was used. The Time Projection Chamber (TPC) provides track reconstruction as well as particle identification via the measurement of the specific ionisation energy loss dE/dx. The Time-Of-Flight detector (TOF) extends the charged particle identification capabilities of the TPC via the measurement of the flight time of the particles from the interaction point. The event collision time is measured with the T0 detector, which consists of two arrays of Cherenkov counters located at \(+350\) cm and \(-70\) cm along the beam line, or, for the events with sufficiently large multiplicity, it is estimated using the particle arrival times at the TOF [35]. The V0 detector, used in the online trigger and offline event selection, consists of two arrays of 32 scintillators each, covering the pseudorapidity intervals \(-3.7< \eta < -1.7\) and \(2.8< \eta < 5.1\), placed around the beam vacuum tube on either side of the interaction region. A minimum-bias (MB) trigger was used to collect the data sample, by requiring at least one hit in either of the V0 counters or in the SPD (\(|\eta | < 2\)). Events were selected off-line by using the timing information from the V0 and the correlation between the number of hits and track segments in the SPD detector to remove background due to beam–gas interactions. Only events with a primary vertex reconstructed within \(\pm 10~\mathrm{cm}\) from the centre of the detector along the beam line were used for the analysis. The analysed data sample consists of about 370 million MB events, corresponding to an integrated luminosity \(L_\mathrm{int} = (6.0 \pm 0.2)\) nb\(^{-1}\), collected during the 2010 pp run at \(\sqrt{s}= 7\) TeV.

D mesons were reconstructed via their hadronic decay channels \(\mathrm{D}^0 \rightarrow \mathrm{K}^-\pi ^+\) (with branching ratio, BR \(=\) 3.93 ± 0.04%), \(\mathrm{D}^+\rightarrow \mathrm{K}^-\pi ^+\pi ^+\) (BR \(=\) 9.46 ± 0.24%), \(\mathrm{D^{*+}(2010)\rightarrow D^0\pi ^+}\) (strong decay with BR \(=\) 67.7 ± 0.5%) with \(\mathrm{D}^0 \rightarrow \mathrm{K}^-\pi ^+\) and \(\mathrm{D_s^{+}\rightarrow \phi \pi ^+}\) with \(\mathrm{\phi \rightarrow K^-K^+}\) (BR \(=\) 2.27 ± 0.08%), together with their charge conjugates [36].

D-meson candidates were defined using pairs or triplets of tracks with the proper charge-sign combination. Tracks were required to have \(|\eta | < 0.8\), \(p_\mathrm{T}> 0.3~{\mathrm {GeV}}/c\), at least 70 associated TPC space points (out of a maximum of 159), \(\chi ^{2}/\mathrm{ndf} < 2\) in the TPC (where ndf is the number of degrees of freedom involved in the track fit procedure), and at least one hit in either of the two layers of the SPD. For the soft pion produced in \(\mathrm{D^{*+}}\) decay, also tracks reconstructed only with the ITS, with at least four hits, including at least one in the SPD, and \(p_\mathrm{T}>80~{\mathrm {MeV}}/c\) were considered. With these track selection criteria, the acceptance in rapidity for D mesons drops steeply to zero for \(|y|>0.5\) at low \(p_\mathrm{T}\) and \(|y|>0.8\) at \(p_\mathrm{T}>5~{\mathrm {GeV}}/c\). A \(p_\mathrm{T}\)-dependent fiducial acceptance cut was therefore applied on the D-meson rapidity, \(|y| < y_\mathrm{fid}(p_\mathrm{T})\), with \(y_{\mathrm {fid}}(p_\mathrm{T})\) increasing from 0.5 to 0.8 in the transverse momentum range \(0< p_\mathrm{T}< 5~{\mathrm {GeV}}/c\) according to a second-order polynomial function, and \(y_{\mathrm {fid}}=0.8\) for \(p_\mathrm{T}> 5~{\mathrm {GeV}}/c\).

\(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\) mesons have mean proper decay lengths \(c\tau \) of about 123, 312 and 150 \(\upmu \)m, respectively [36]. Their decay vertices are therefore typically displaced by a few hundred \(\upmu \)m from the primary vertex of the interaction. Geometrical selections on the D-meson decay topology were applied to reduce the combinatorial background. The selection requirements were tuned so as to provide a large statistical significance for the signal and to keep the selection efficiency as high as possible. The latter requirement was dictated also by the fact that too tight cuts result in an increased contribution to the raw yield from feed-down D mesons originating from decays of B mesons. In the \(\mathrm{D}^{*+} \rightarrow \mathrm{D}^0 \pi ^+\) case, the decay vertex cannot be resolved from the primary vertex and geometrical selections were applied on the secondary vertex topology of the produced \(\mathrm{D^0}\). The geometrical selections were mainly based on the displacement of the tracks from the interaction vertex, the distance between the D-meson decay vertex and the primary vertex (decay length, L), and the pointing of the reconstructed D-meson momentum to the primary vertex. The pointing condition is applied by requiring a small value for the angle \(\theta _\mathrm{pointing}\) between the directions of the reconstructed momentum of the candidate and its flight line, defined by the vector from the primary to the secondary vertex. In comparison to the previous analysis of the same data sample, additional selection criteria were introduced. In particular, the projections of the pointing angle and of the decay length in the transverse plane (\(\theta _\mathrm{pointing}^{r\varphi }\) and \(L^{r\varphi }\)) were considered. Moreover, a cut on the normalised difference between the measured and expected impact parameters of each of the decay particles \((d^\mathrm{reco}_{0,\mathrm{tr}} - d^\mathrm{exp}_{0,\mathrm{tr}}\))/\(\sigma _{\Delta }\) was applied, where \(d^\mathrm{reco}_{0,\mathrm{tr}}\) is the measured track impact parameter, \(d^\mathrm{exp}_{0,\mathrm{tr}}\) is defined as \(L^{r\varphi } \sin (\theta _\mathrm{tr,D}^{r\varphi })\), \(\theta _\mathrm{tr,D}^{r\varphi }\) is the measured angle between the momenta of the D meson and of the considered track, and \(\sigma _{\Delta }\) is the combination of the uncertainties on the measured and expected \(d_{0}\). By requiring \((d^\mathrm{reco}_{0,\mathrm{tr}} - d^\mathrm{exp}_{0,\mathrm{tr}})/\sigma _{\Delta }<3\), a significant rejection of background candidates (15–40% depending on D-meson species and \(p_\mathrm{T}\)) and feed-down D mesons (up to 50% at high \(p_\mathrm{T}\)) is achieved while keeping almost 100% of the prompt D mesons.

Further reduction of the combinatorial background was obtained by applying particle identification (PID) to the decay tracks. A \(3 \sigma \) compatibility cut was applied on the difference between the measured and expected signals for pions and kaons for both the \({\mathrm {d}}E/{\mathrm {d}}x\) and time-of-flight. Tracks without TOF hits were identified using only the TPC information with a \(3\,\sigma \) selection for \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D^{*+}}\) decay products, and a \(2\,\sigma \) selection for the \(\mathrm{D_s^+}\). This stricter PID selection strategy was needed in the \(\mathrm{D_s^+}\) case due to the large background of track triplets and the short \(\mathrm{D_s^+}\) lifetime, which limits the effectiveness of the geometrical selections on the displaced decay-vertex topology. Based on the PID information and the charge sign of the decay tracks, \(\mathrm{D^0}\) candidates were accepted (as \(\mathrm{D}^{0}\), \({\overline{\mathrm{D}^0}}\), or both) or rejected, according to the compatibility with the K\(^{\mp }\) \(\pi ^{\pm }\) final state. For the \(\mathrm{D^{*+}}\) reconstruction, this ambiguity is resolved using the charge of the soft pion. In the cases of the \(\mathrm{D_s^{+} \rightarrow K^-K^+\pi ^+}\) and \(\mathrm{D}^+\rightarrow \mathrm{K}^-\pi ^+\pi ^+\) decays, a candidate was rejected if the track with charge opposite to that of the D meson was not compatible with the kaon PID hypothesis.

The D-meson raw yields, including both particles and anti-particles, were obtained from fits to the \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\) candidate invariant-mass distributions and to the mass difference \(\Delta M = M ({\mathrm {K}} \pi \pi ) - M({\mathrm {K}} \pi )\) distributions for \(\mathrm{D^{*+}}\) candidates. In the fit function, the signal was modeled with a Gaussian and the background was described by an exponential term for \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\) candidates and by the function \(a \sqrt{\Delta M - m_{\pi }} \cdot \mathrm{e}^{b(\Delta M - m_{\pi })}\) for \(\mathrm{D^{*+}}\) candidates. In the case of \(\mathrm{D^0}\) mesons, an additional term was included in the fit function to account for the contribution of signal candidates that are present in the invariant mass distribution with the wrong daughter particle mass assignment (reflections). A study with Monte Carlo simulations showed that about 70\(\%\) of these reflections are rejected by the PID selections. The residual contribution was accounted for by including in the fit a template consisting of the sum of two wide Gaussians with centroids and widths fixed to values obtained in the simulation and with amplitudes normalised using the signal observed in data.

Figure 1 shows fits to the invariant-mass (mass-difference) distributions in three \(p_\mathrm{T}\) intervals for \(\mathrm{D^0}\), \(\mathrm{D^+}\), (\(\mathrm{D^{*+}}\)) and \(\mathrm{D_s^+}\) candidates from top to bottom. The mean values of the Gaussians in all transverse-momentum intervals were found to be compatible within uncertainties with the world average rest mass values for \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\) and with the difference \(M_{\mathrm{D^{*+}}} - M_{\mathrm{D^0}}\) for the \(\mathrm{D^{*+}}\) [36]. The widths are consistent with the results from Monte Carlo simulations and smaller by 10–20% than the values in [14, 16], as a consequence of the improved \(p_\mathrm{T}\) resolution.
Fig. 1

Invariant-mass (mass-difference) distributions of \(\mathrm{D^0}\), \(\mathrm{D^+}\), (\(\mathrm{D^{*+}}\)) and \(\mathrm{D_s^+}\) candidates and charge conjugates in three \(p_\mathrm{T}\) intervals for a sample of pp collisions at \(\sqrt{s}=7~{\mathrm {TeV}}\) with \(L_\mathrm{int}=6.0~\mathrm{nb}^{-1}\). The curves show the fit functions as described in the text. The contribution of reflections for the \(\mathrm{D^0}\) meson is included. The values of mean (\(\mu \)) and width (\(\sigma \)) of the signal peak are reported together with the signal counts (S) in the mass interval (\(\mu - 3\sigma ,\mu + 3\sigma \))

The \(p_\mathrm{T}\)-differential cross section of prompt D mesons was computed as:
$$\begin{aligned} \frac{\mathrm{d}^2 \sigma ^{\mathrm{D}}}{\mathrm{d}p_\mathrm{T}\mathrm{d} y}= \frac{1}{c_{\Delta y} ~\Delta p_\mathrm{T}}\frac{1}{\mathrm{BR}} \frac{\frac{1}{2} \, \left. f_\mathrm{prompt}\cdot N^{\mathrm{D}+{\overline{\mathrm{D}}},\mathrm{raw}}\right| _{|y|<y_\mathrm{fid}}}{ (\mathrm{Acc}\times \varepsilon )_\mathrm{prompt}} \frac{1}{L_\mathrm{int}},\nonumber \\ \end{aligned}$$
(1)
where \(f_\mathrm{prompt}\), \(N^{\mathrm{D}+{\overline{\mathrm{D}}},\mathrm{raw}}\) and \((\mathrm{Acc}\times \varepsilon )_\mathrm{prompt}\) are \(p_\mathrm{T}\)-interval dependent quantities. The raw yield values (sum of particles and antiparticles, \(N^{\mathrm{D}+{\overline{\mathrm{D}}},\mathrm{raw}}\)) were corrected for the B-meson decay feed-down contribution (i.e. multiplied by the prompt fraction \(f_{\mathrm{prompt}}\) in the raw yield), divided by the acceptance-times-efficiency for prompt D mesons \((\mathrm{Acc} \times \varepsilon )_{\mathrm{prompt}}\), and divided by a factor of two to obtain the particle and antiparticle averaged yields. The \(p_\mathrm{T}\)-differential yields for each D-meson species, measured separately for particles and anti-particles, were found to be in agreement within statistical uncertainties. The corrected yields were divided by the decay channel BR, the \(p_\mathrm{T}\) interval width \(\Delta p_\mathrm{T}\), the correction factor for the rapidity coverage \(c_{\Delta y}\), and the integrated luminosity \(L_\mathrm{int}=N_\mathrm{ev} / \sigma _\mathrm{MB} \), where \(N_\mathrm{ev}\) is the number of analysed events and \(\sigma _\mathrm{MB}=62.2\) mb is the cross section for the MB trigger condition [37].

The \((\mathrm{Acc} \times \varepsilon )\) correction factor was determined using simulations of pp collisions generated with the PYTHIA 6.4.21 event generator [38] (Perugia-0 tune [39]), and particle transport through the apparatus using GEANT3 [40]. The luminous region distribution and the conditions of all the ALICE detectors were included in the simulations. The \((\mathrm{Acc} \times \varepsilon )\) for prompt and feed-down \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) mesons with \(|y| < y_\mathrm{fid}\) is shown in Fig. 2 as a function of \(p_\mathrm{T}\). The efficiencies for feed-down D mesons are higher than those for prompt D mesons in most of the \(p_\mathrm{T}\) intervals, because the decay vertices of the feed-down D mesons are on average more displaced from the primary vertex due to the large B-meson lifetime (\(c\tau \approx 500~\upmu \hbox {m}\) [36]). However, the selection on the difference between measured and expected decay-track impact parameters rejects more efficiently feed-down D mesons, thus reducing the difference between prompt and feed-down efficiencies as compared to the previous analyses.

The rapidity acceptance correction factor \(c_{\Delta y}\) was computed with the PYTHIA 6.4.21 event generator with Perugia-0 tune as the ratio between the generated D-meson yield in \(\Delta y = 2\,y_\mathrm{fid}\), (with \(y_\mathrm{fid}\) varying from 0.5 at low \(p_\mathrm{T}\) to 0.8 at high \(p_\mathrm{T}\)) and that in \(|y|<0.5\). It was checked that calculations of the \(c_{\Delta y}\) correction factor based on FONLL pQCD calculations [7] or on the assumption of uniform D-meson rapidity distribution in \(|y|<y_\mathrm{fid}\) would give the same result, because both in PYTHIA and in FONLL the D-meson yield is uniform within 1% in the range \(|y|<0.8\).
Fig. 2

Acceptance \(\times \) efficiency for \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) mesons, as a function of \(p_\mathrm{T}\). The efficiencies for prompt (solid lines) and feed-down (dotted lines) D mesons are shown

The \(f_\mathrm{prompt}\) fraction was calculated using the B production cross sections from FONLL calculations [6, 41], the \({\mathrm {B}} \rightarrow {\mathrm {D}} + X\) decay kinematics from the EvtGen package [42] and the efficiencies for feed-down D mesons reported in Fig. 2:
$$\begin{aligned} f_{\mathrm {prompt}}= & {} 1- \frac{N^{\text {D~feed-down}}_{\mathrm {raw}}}{N^{\mathrm {D}}_{\mathrm {raw}}}= 1- \left( \frac{\mathrm{d}^2 \sigma }{{{\mathrm {d}}} p_\mathrm{T}{{\mathrm {d}}} y} \right) ^\mathrm{FONLL}_{\text {feed-down}}\nonumber \\&\cdot \frac{({\mathrm {Acc}} \times \varepsilon )_{\text {feed-down}} \cdot c_{\Delta y} \Delta p_\mathrm{T}\cdot {\mathrm {BR}} \cdot L_\mathrm{int}}{N^{\mathrm{D} +\overline{\mathrm{D}},\mathrm{raw}}/2}, \end{aligned}$$
(2)
where the \(p_\mathrm{T}\) dependence of \(f_\mathrm{prompt}\), \(N^{\mathrm{D} +\overline{\mathrm{D}},\mathrm{raw}}\) and \(({\mathrm {Acc}} \times \varepsilon )_{\text {feed-down}}\) is omitted for brevity. The values of \(f_\mathrm{prompt}\) range between 0.85 and 0.97 depending on D-meson species and \(p_\mathrm{T}\).

3 Systematic uncertainties

Systematic uncertainties were estimated considering several sources. A summary is shown in Table 1 for two \(p_\mathrm{T}\) intervals. New or refined procedures were used with respect to the analyses presented in [14, 16], in particular for the uncertainties on the signal yield extraction, the track reconstruction efficiency and the feed-down subtraction.

The systematic uncertainties on the yield extraction obtained from the fits to the invariant-mass distributions (mass difference for \(\mathrm{D^{*+}}\) mesons) were evaluated by repeating the fits several times varying (i) the invariant-mass bin width, (ii) the lower and upper limits of the fit range, (iii) the background fit function (exponential function, first, second and third order polynomials were used for \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\) and a power law for the \(\mathrm{D^{*+}}\)), for a total of about few hundred fits for each D-meson species and \(p_\mathrm{T}\) interval. In addition, the same approach was used with a bin counting method, in which the signal yield was obtained by integrating the invariant-mass distribution after subtracting the background estimated from a fit to the side-bands. The distributions of the signal yield obtained from these variations are consistent with a Gaussian shape and the mean of the distributions is close to the central value of the yield. The systematic uncertainty was defined as the R.M.S. of this distribution.
Table 1

Summary of relative systematic uncertainties for two \(p_\mathrm{T}\) intervals

\(p_\mathrm{T}\) (GeV/c)

\(\mathrm{D^0}\)

\(\mathrm{D^+}\)

\(\mathrm{D^{*+}}\)

\(\mathrm{D_s^+}\)

2–3

10–12

2–3

10–12

2–3

10–12

2–4

8–12

Signal yield

3%

4%

6%

5%

2%

2%

5%

5%

Tracking efficiency

4%

4%

4%

6%

6%

6%

5%

6%

Selection efficiency

5%

5%

10%

5%

5%

5%

7%

7%

PID efficiency

0

0

0

0

0

0

7%

7%

\(p_\mathrm{T}\) Shape in MC

0

0

1%

2%

2%

0

3%

2%

Feed-down

\(^{+4}_{- 4}\%\)

\(^{+3}_{- 5}\%\)

\(^{+2}_{- 3}\%\)

\(^{+2}_{- 3}\%\)

\(^{+2}_{- 2}\%\)

\(^{+2}_{- 3}\%\)

\(^{+4}_{- 5}\%\)

\(^{+4}_{- 5}\%\)

Branching ratio

1.0%

2.5%

1.3%

3.5%

Normalisation

3.5%

The systematic uncertainty on the track reconstruction efficiency was estimated by varying the track-quality selection criteria and by comparing the probability to prolong tracks from the TPC inward to the ITS (‘matching efficiency’) in data and simulations. The variation of the track selection criteria, such as the minimum number of clusters in the TPC, was found to yield a 2% systematic effect on the cross section of \(\mathrm{D^0}\) mesons (two-prong final state) and 3% for the other meson species (three-prong final states). The comparison of the matching efficiency in data and simulations was made after weighting the relative abundances of primary and secondary particles in the simulation to match those observed in data. This weighting is motivated by the observation that the matching efficiency is much larger for primary particles than for secondary particles produced far from the interaction point in decays of strange hadrons and in interactions of primary particles with the material of the detector. The fractions of primary and secondary particles were estimated, as a function of \(p_\mathrm{T}\), by fitting the inclusive track impact parameter distributions in data and in the simulation with a sum of three template distributions for primary particles, for secondary particles from strange-hadron decays and for secondary particles produced in interactions of primary particles in the detector material. The templates were obtained from the simulation. After weighting the relative abundances in the simulation to match those in data, the systematic uncertainty on the matching efficiency was defined as the relative difference of the matching efficiencies in data and in the simulation. The study was made separately for particles identified as pions and as kaons using the TPC and TOF PID selections described in Sect. 2. The systematic uncertainty is 2% per track in the interval \(2<p_\mathrm{T}<6\) GeV/c and 1% at lower and higher \(p_\mathrm{T}\). The per-track uncertainty was then propagated to the D mesons, taking into account the number and transverse momentum of their decay tracks, and added in quadrature to the component estimated from the track selection variation.

Systematic uncertainties can also arise from possible differences in the distributions and resolution of the geometric selection variables between data and the simulation. These uncertainties were evaluated by repeating the analysis with several sets of selection criteria and comparing the resulting corrected cross sections. More details can be found in [14].

To estimate the uncertainty on the PID selection efficiency, for the three non-strange D-meson species the analysis was repeated without PID selection. The resulting cross sections were found to be compatible with those obtained with the PID selection. Therefore, no systematic uncertainty was assigned. For the \(\mathrm{D_s^+}\) meson, the lower signal yield and the larger combinatorial background prevented a signal estimation without particle identification, hence, in this case, a 3\(\sigma \) PID selection, looser with respect to the PID strategy adopted in the analysis, was used to estimate a systematic uncertainty of about 7%.

The systematic effect on the efficiency due to a possible difference between the simulated and real \(p_\mathrm{T}\) distribution of D mesons was estimated by using alternative D-meson \(p_\mathrm{T}\) distributions from the PYTHIA 6 generator with Perugia-0 tune and from the FONLL pQCD calculation. More details can be found in [14].

The systematic uncertainty on the subtraction of feed-down from beauty-hadron decays includes the uncertainties of (i) the B-meson production cross section from FONLL calculations, (ii) the branching ratios of B mesons into D mesons [36] and (iii) the relative abundances of B-meson species produced in the beauty-quark fragmentation [36]. The dominant contribution is the one originating from the FONLL calculations and it was estimated by varying the \(p_\mathrm{T}\)-differential cross section of feed-down D mesons within the theoretical uncertainties of the FONLL calculation. The procedure for the variation of the b-quark mass, of the perturbative scales and of the parton distribution functions is described in [7]. In previous analyses, an alternative method based on the ratio of the FONLL cross sections for feed-down and prompt D mesons was also used in the estimation of the systematic uncertainties. In this analysis it was no longer used, on the basis of the observation that FONLL calculations at LHC energies provide a good description of the production cross sections of \(\mathrm{B}^{0}\), \(\mathrm{B}^{+}\) and \(\mathrm{B}_\mathrm{s}^0\) mesons at both central and forward rapidity, while it underestimates prompt charm production [43, 44, 45, 46, 47, 48]. Hence, the uncertainty due to the B feed-down correction is significantly reduced and more symmetric as compared to our previous publications.

The uncertainty on the D-meson production cross section normalisation has a contribution from the 3.5% uncertainty on the minimum-bias trigger cross section [37] and a contribution from the uncertainties on the branching ratios of the considered D-meson decay channels (see Table 1).

The total systematic uncertainties, which are obtained as a quadratic sum of the contributions listed in Table 1, are reduced by a factor that ranges from 1.5 to 5, depending on D-meson species and \(p_\mathrm{T}\) interval, with respect to previous publications [14, 16]. The systematic uncertainties on PID, tracking and selection efficiencies are mostly correlated among the different \(p_\mathrm{T}\) intervals, while the raw-yield extraction uncertainty is mostly uncorrelated.

4 Results

The \(p_\mathrm{T}\)-differential cross sections for prompt \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) production in \(|y|<0.5\) are shown in Fig. 3. The error bars represent the statistical uncertainties, while the systematic uncertainties are shown as boxes around the data points. The symbols are positioned horizontally at the centre of each \(p_\mathrm{T}\) interval, with the horizontal bars representing the width of the \(p_\mathrm{T}\) interval. For all D-meson species, the results are consistent within uncertainties with those reported in our previous publications on charmed-meson cross sections in pp collisions at \(\sqrt{s}=7~{\mathrm {TeV}}\) [14, 16], but the total uncertainties (sum in quadrature of statistical and systematic errors) are reduced by a factor 1.5–4, depending on the D-meson species and the \(p_\mathrm{T}\) interval. The \(\mathrm{D^0}\)-meson cross section in the interval \(0<p_\mathrm{T}<1~{\mathrm {GeV}}/c\) is obtained from the analysis without decay vertex reconstruction described in Ref. [17]. At higher \(p_\mathrm{T}\), the results of the analysis presented in this paper, based on geometrical selections on the displaced decay vertex, are more precise than those obtained without decay vertex reconstruction.
Fig. 3

\(p_\mathrm{T}\)-differential inclusive production cross section of prompt \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) mesons in pp collisions at \(\sqrt{s}=7~{\mathrm {TeV}}\). Statistical uncertainties (bars) and systematic uncertainties (boxes) are shown. The \(\mathrm{D^{*+}}\) cross section is scaled by a factor of 5 for better visibility

In Figs. 4, 5, 6 and 7, the measured \(p_\mathrm{T}\)-differential cross sections are compared with results from perturbative QCD calculations, two of which are based on collinear factorisation (FONLL [6, 7] and GM-VFNS [3, 4, 5]) and one is a leading order (LO) calculation based on \(k_\mathrm{T}\)-factorisation [9]. The results of these calculations, performed in the same \(p_\mathrm{T}\) intervals of the measurement, are shown as filled boxes spanning the theoretical uncertainties and a solid line representing the values obtained with the central values of the pQCD parameters. The theoretical uncertainties are estimated in all the three frameworks by varying the renormalisation and factorisation scales. In the FONLL and \(k_\mathrm{T}\)-factorisation calculations also the effect of the charm-quark mass uncertainty is considered. In the FONLL and GM-VFNS calculations, the CTEQ6.6 PDFs [49] were used, and the uncertainty on the PDFs was included in the FONLL error boxes. The LO \(k_\mathrm{T}\)-factorisation calculations were performed with an updated set of unintegrated gluon-distribution functions computed from the recent MMHT2014-LO PDFs [50]. For this reason, the comparison to the measured \(\mathrm{D^0}\)-meson cross section differs from that reported in Ref. [17]. In the FONLL calculation, the fragmentation fractions \(f(\mathrm{c}\rightarrow D)\), i.e. the fractions of charm quarks hadronising into each D-meson species, were taken from Ref. [51]. For the \(\mathrm{D_s^+}\) mesons, only the comparisons to GM-VFNS and LO \(k_\mathrm{T}\)-factorisation predictions are shown, because a calculation of the \(\mathrm{D_s^+}\) production cross section within the FONLL framework is not available. The central value of the GM-VFNS predictions lies systematically above the data, while that of the FONLL predictions lies below the data. For FONLL, this feature was observed also at other values of \(\sqrt{s}\), from 0.2 to 13 TeV [11, 12, 15, 19, 20, 21]. The LO \(k_\mathrm{T}\)-factorisation calculation describes the data within uncertainties for \(p_\mathrm{T}<2~{\mathrm {GeV}}/c\) and \(p_\mathrm{T}>10~{\mathrm {GeV}}/c\), while in the interval \(2<p_\mathrm{T}<10~{\mathrm {GeV}}/c\) the predictions underestimate the measured production cross sections.
Fig. 4

\(p_\mathrm{T}\)-differential production cross section of prompt \(\mathrm{D^0}\) mesons with \(|y|<0.5\) in the interval \(0<p_\mathrm{T}<36~{\mathrm {GeV}}/c\), in pp collisions at \(\sqrt{s} =7~{\mathrm {TeV}}\). The data point in \(0<p_\mathrm{T}<1~{\mathrm {GeV}}/c\) is obtained from the analysis without decay vertex reconstruction described in Ref. [17]. The cross section is compared to three pQCD calculations: FONLL [7] (top-left panel), GM-VFNS [5] (top-right panel) and a leading order (LO) calculation based on \(k_\mathrm{T}\)-factorisation [9] (bottom panel). The ratios of the data to the three calculated cross sections are shown in the lower part of each panel. In the data-to-theory ratios the 3.5% normalisation uncertainty due to the luminosity determination is not included in the systematic uncertainty on the data points

Fig. 5

\(p_\mathrm{T}\)-differential production cross section of prompt \(\mathrm{D^+}\) mesons with \(|y|<0.5\) in the interval \(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\), in pp collisions at \(\sqrt{s} =7~{\mathrm {TeV}}\). The cross section is compared to three pQCD calculations: FONLL [7] (top-left panel), GM-VFNS [5] (top-right panel) and a leading order (LO) calculation based on \(k_\mathrm{T}\)-factorisation [9] (bottom panel). The ratios of the data to the three calculated cross sections are shown in the lower part of each panel. In the data-to-theory ratios the 3.5% normalisation uncertainty due to the luminosity determination is not included in the systematic uncertainty on the data points

Fig. 6

\(p_\mathrm{T}\)-differential production cross section of prompt \(\mathrm{D^{*+}}\) mesons with \(|y|<0.5\) in the interval \(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\), in pp collisions at \(\sqrt{s} =7~{\mathrm {TeV}}\). The cross section is compared to three pQCD calculations: FONLL [7] (top-left panel), GM-VFNS [5] (top-right panel) and a leading order (LO) calculation based on \(k_\mathrm{T}\)-factorisation [9] (bottom panel). The ratios of the data to the three calculated cross sections are shown in the lower part of each panel. In the data-to-theory ratios the 3.5% normalisation uncertainty due to the luminosity determination is not included in the systematic uncertainty on the data points

Fig. 7

\(p_\mathrm{T}\)-differential production cross section of prompt \(\mathrm{D_s^+}\) mesons with \(|y|<0.5\) in the interval \(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\), in pp collisions at \(\sqrt{s} =7~{\mathrm {TeV}}\). The cross section is compared to two pQCD calculations: GM-VFNS [5] (left panel) and a leading order (LO) calculation based on \(k_\mathrm{T}\)-factorisation [9] (right panel). The ratios of the data to the calculated cross sections are shown in the lower part of each panel. In the data-to-theory ratios the 3.5% normalisation uncertainty due to the luminosity determination is not included in the systematic uncertainty on the data points

The average transverse momentum \({\langle p_{ {\mathrm T} } \rangle }\) of prompt \(\mathrm{D^0}\) mesons was measured by fitting the cross section reported in Fig. 4 with a power-law function:
$$\begin{aligned} f(p_\mathrm{T})=C \frac{p_\mathrm{T}}{(1+(p_\mathrm{T}/p_0)^2)^n}, \end{aligned}$$
(3)
where C, \(p_0\) and n are the free parameters. The prompt-\(\mathrm{D^0}\) \({\langle p_{ {\mathrm T} } \rangle }\), defined as the mean value of the fit function, is:
$$\begin{aligned} {\langle p_{ {\mathrm T} } \rangle }^{\mathrm{prompt}\,\mathrm{D}^0}_{\mathrm{pp},\,7\,\mathrm{TeV}} = 2.19 \pm 0.06\,(\mathrm{stat.})\, \pm 0.04\,(\mathrm{syst.})~{\mathrm {GeV}}/c.\nonumber \\ \end{aligned}$$
(4)
The systematic uncertainty on \({\langle p_{ {\mathrm T} } \rangle }\) was estimated as described in Ref. [17] taking into account separately the contributions due to the correlated and uncorrelated systematic uncertainties on the measured \(p_\mathrm{T}\)-differential cross section. The uncertainty due to the fit function was estimated from the spread of the results obtained with different functions and using an alternative method, which is not based on fits to the distribution, but on direct calculations of \({\langle p_{ {\mathrm T} } \rangle }\) from the data points.
The ratios of the \(p_\mathrm{T}\)-differential cross sections of \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) mesons are reported in Fig. 8. In the evaluation of the systematic uncertainties on these ratios, the sources of correlated and uncorrelated systematic effects were treated separately. In particular, the contributions of the yield extraction and cut efficiency were considered as uncorrelated, while those of the feed-down from beauty-hadron decays and the tracking efficiency were treated as fully correlated among the different D-meson species. The measured D-meson ratios do not show a significant \(p_\mathrm{T}\) dependence within the experimental uncertainties, thus suggesting a small difference between the fragmentation functions of charm quarks to pseudoscalar (\(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\)) and vector (\(\mathrm{D^{*+}}\)) mesons and to strange and non-strange mesons. The data are compared to the ratios of the D-meson cross sections from FONLL (only for \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D^{*+}}\) mesons), GM-VFNS and LO \(k_\mathrm{T}\)-factorisation pQCD calculations. The ratios of the theoretical predictions were computed assuming their uncertainties to be fully correlated among the D-meson species, which results in an almost complete cancellation of the uncertainties in the ratio. Note that in all these pQCD calculations, the relative abundances of the different D-meson species are not predicted by the theory, but the fragmentation fractions, \(f({\mathrm{c}\rightarrow \mathrm{D}})\), are taken from the experimental measurements [7, 9, 51, 52, 53, 54]. In the FONLL and GM-VFNS frameworks, the \(p_\mathrm{T}\) dependence of the ratios of the D-meson production cross sections arises from the different fragmentation functions used to model the transfer of energy from the charm quark to a specific D-meson species [52, 53, 55], and from the different contribution from decays of higher excited states. The parton fragmentation models used in the calculations provide an adequate description of the measured data. In the LO \(k_\mathrm{T}\)-factorisation calculations, the same fragmentation function (Peterson [56]) is used for \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D_s^+}\) mesons, resulting in the same shape of the \(p_\mathrm{T}\) distributions of these three meson species, while the fragmentation functions for vector mesons from Ref. [57] are used for \(\mathrm{D^{*+}}\) mesons [9].
Fig. 8

Ratios of D-meson production cross sections as a function of \(p_\mathrm{T}\). Predictions from FONLL, GM-VFNS and LO \(k_\mathrm{T}\)-factorisation calculations are also shown. For the pQCD calculations the line shows the ratio of the central values of the theoretical cross sections, while the shaded area is defined by the ratios computed from the upper and lower limits of the theoretical uncertainty band

The ratios of \(\mathrm{D^0}\)-meson production cross sections in different rapidity intervals, which are expected to be sensitive to the gluon PDF at small values of Bjorken-x [22], were computed from our measurement in the central rapidity region (\(|y|<0.5\)) and the results reported by the LHCb collaboration for pp collisions at \(\sqrt{s}=7~{\mathrm {TeV}}\) in different y intervals at forward rapidity [19]. The results are reported in Fig. 9, where the central-to-forward ratios are shown as a function of \(p_\mathrm{T}\) for three different y intervals at forward rapidity: \(2<y<2.5\) (left panel), \(3<y<3.5\) (middle panel), \(4<y<4.5\) (right panel). The error bars represent the total uncertainty obtained from the propagation of the statistical and systematic uncertainties on the \(p_\mathrm{T}\)-differential cross sections. The measured ratios are compared to FONLL calculations, shown as boxes in Fig. 9. The central-to-forward ratios computed using the central values of the factorisation and renormalisation scales are found to describe the data within their uncertainties. The upper edge of the FONLL uncertainty band, which is also in agreement with the measured values of the central-to-forward ratios, is determined by the calculations with factorisation scale \(\mu _\mathrm{F}=2\,m_\mathrm{T}\), where \(m_\mathrm{T}=\sqrt{p_\mathrm{T}^2+m_\mathrm{c}^2}\) and \(m_\mathrm{c}=1.5~{\mathrm {GeV}}/c^2\). The low edge of the FONLL uncertainty band is determined by the calculations with \(\mu _\mathrm{F}=0.5\,m_\mathrm{T}\), which provide a worse description of the measured central-to-forward ratios at low \(p_\mathrm{T}\) for the most forward rapidity interval. Note that in this forward rapidity interval, the FONLL calculation with \(\mu _\mathrm{F}=0.5\,m_\mathrm{T}\) uses the PDFs for Bjorken-x values reaching down to about \(10^{-5}\), a region that is not constrained by experimental data, and below \(Q^2 = (1.3~{\mathrm {GeV}}/c)^2\), where the CTEQ6.6 PDFs [49] are kept constant to their values at \((1.3~{\mathrm {GeV}}/c)^2\).
Fig. 9

Ratios of \(\mathrm{D^0}\)-meson production cross section per unit of rapidity at mid-rapidity (\(|y|<0.5\)) to that measured by the LHCb Collaboration [19] in three rapidity ranges, \(2<y<2.5\) (left panel), \(3<y<3.5\) (middle panel), \(4<y<4.5\) (right panel), as a function of \(p_\mathrm{T}\). The LHCb measurement were multiplied by 2 to refer them to one unit of rapidity. The error bars represent the total (statistical and systematic) uncertainty on the measurement. Predictions from FONLL calculations are compared to the data points

The visible cross sections of prompt D mesons, obtained by integrating the \(p_\mathrm{T}\)-differential cross sections in the measured \(p_\mathrm{T}\) range, are reported in Table 2. In addition, for \(\mathrm{D^0}\) mesons the cross sections integrated over the \(p_\mathrm{T}\) intervals of the \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) measurements are shown. The systematic uncertainty was defined by propagating the yield extraction uncertainties as uncorrelated among \(p_\mathrm{T}\) intervals and all the other uncertainties as correlated. These values were used to compute the ratios of the \(p_\mathrm{T}\)-integrated D-meson production cross sections, which are reported in Table 3. The systematic uncertainties on the ratios were computed taking into account the sources correlated and uncorrelated among the different D-meson species as described above. The measured ratios are compatible within uncertainties with the results at \(\sqrt{s}=2.76~{\mathrm {TeV}}\) [15] and with the measurements of the LHCb collaboration at forward rapidity (\(2.0<y<4.5\)) at three different collision energies \(\sqrt{s}=\) 5, 7 and 13 TeV [19, 20, 21]. The measured \(p_\mathrm{T}\)-integrated production ratios are also compatible with the charm-quark fragmentation fractions \(f(\mathrm{c}\rightarrow \mathrm{D})\) measured in \({\mathrm{e}^+\mathrm{e}^-}\) collisions from the compilation in [51]. These results indicate that the fragmentation fractions of charm quarks into different D-meson species do not vary substantially with rapidity, collision energy and colliding system.
Table 2

Visible production cross sections of prompt D mesons in \(|y| < 0.5\) in pp collisions at \(\sqrt{s}= 7~{\mathrm {TeV}}\)

 

Kinematic range

Visible cross section (\(\upmu {\mathrm {b}}\))

 \(\mathrm{D^0}\)

\(0<p_\mathrm{T}<36~{\mathrm {GeV}}/c\)

\(500 \pm 36 (\mathrm{stat}) \pm 39 (\mathrm{syst}) \pm 18 (\mathrm{lumi}) \pm 5 (\mathrm{BR})\)

 

\(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\)

\(402 \pm 24 (\mathrm{stat}) \pm 28 (\mathrm{syst}) \pm 14 (\mathrm{lumi}) \pm 4 (\mathrm{BR})\)

 

\(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\)

\(210 \pm \phantom {0}7 (\mathrm{stat}) \pm 14 (\mathrm{syst}) \pm \phantom {0}7 (\mathrm{lumi}) \pm 2 (\mathrm{BR})\)

 \(\mathrm{D^+}\)

\(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\)

\(182 \pm 14 (\mathrm{stat}) \pm 20 (\mathrm{syst}) \pm \phantom {0}6 (\mathrm{lumi}) \pm 5 (\mathrm{BR})\)

 

\(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\)

\(\phantom {0}89 \pm \phantom {0}3 (\mathrm{stat}) \pm \phantom {0}9 (\mathrm{syst}) \pm \phantom {0}3 (\mathrm{lumi}) \pm 2 (\mathrm{BR})\)

 \(\mathrm{D^{*+}}\)

\(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\)

\(207 \pm 24 (\mathrm{stat}) \pm 20 (\mathrm{syst}) \pm \phantom {0}7 (\mathrm{lumi}) \pm 3 (\mathrm{BR})\)

 

\(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\)

\(101 \pm \phantom {0}6 (\mathrm{stat}) \pm \phantom {0}8 (\mathrm{syst}) \pm \phantom {0}4 (\mathrm{lumi}) \pm 1 (\mathrm{BR})\)

 \(\mathrm{D_s^+}\)

\(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\)

\(\phantom {0}40 \pm \phantom {0}8 (\mathrm{stat}) \pm \phantom {0}5 (\mathrm{syst}) \pm \phantom {0}1 (\mathrm{lumi}) \pm 1 (\mathrm{BR})\)

Table 3

Ratios of the measured \(p_\mathrm{T}\)-integrated cross sections of prompt D mesons in \(|y| < 0.5\) in pp collisions at \(\sqrt{s}= 7~{\mathrm {TeV}}\)

 

Kinematic range

Production cross section ratio

 \(\sigma (\mathrm{D^+}) / \sigma (\mathrm{D^0})\)

\(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\)

\(0.45 \pm 0.04 (\mathrm{stat}) \pm 0.05 (\mathrm{syst}) \pm 0.01 (\mathrm{BR})\)

 \(\sigma (\mathrm{D^{*+}}) / \sigma (\mathrm{D^0})\)

\(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\)

\(0.52 \pm 0.07 (\mathrm{stat}) \pm 0.05 (\mathrm{syst}) \pm 0.01 (\mathrm{BR})\)

 \(\sigma (\mathrm{D_s^+}) / \sigma (\mathrm{D^0})\)

\(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\)

\(0.19 \pm 0.04 (\mathrm{stat}) \pm 0.02 (\mathrm{syst}) \pm 0.01 (\mathrm{BR})\)

 \(\sigma (\mathrm{D_s^+}) / \sigma (\mathrm{D^+})\)

\(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\)

\(0.45 \pm 0.09 (\mathrm{stat}) \pm 0.06 (\mathrm{syst}) \pm 0.02 (\mathrm{BR})\)

Table 4

Production cross sections of prompt D mesons in \(|y| < 0.5\) and full \(p_\mathrm{T}\) range in pp collisions at \(\sqrt{s}= 7~{\mathrm {TeV}}\)

 

Extr. factor to \(p_\mathrm{T}>0\)

\(\mathrm{d}\sigma /\mathrm{d}y \mid _{|y|<0.5}\) (\(\upmu {\mathrm {b}}\))

 \(\mathrm{D^0}\)

\(1.0002 ^{+0.0004}_{-0.0002}\)

\(500 \pm 36 (\mathrm{stat}) \pm 39 (\mathrm{syst}) \pm 18 (\mathrm{lumi}) \pm 5 (\mathrm{BR})\)

 \(\mathrm{D^+}\)

\(1.25 ^{+0.29}_{-0.09}\)

\(227 \pm 18 (\mathrm{stat}) \pm 25 (\mathrm{syst}) \pm \phantom {0}8 (\mathrm{lumi}) \pm 6 (\mathrm{BR})^{+52}_{-16} (\mathrm{extrap})\)

 \(\mathrm{D^{*+}}\)

\(1.21 ^{+0.28}_{-0.08}\)

\(251 \pm 29 (\mathrm{stat}) \pm 24 (\mathrm{syst}) \pm \phantom {0}9 (\mathrm{lumi}) \pm 3 (\mathrm{BR})^{+58}_{-16} (\mathrm{extrap})\)

 \(\mathrm{D_s^+}\)

\(2.23^{+0.71}_{-0.65}\)

\(\phantom {0}89 \pm 18 (\mathrm{stat}) \pm 11 (\mathrm{syst}) \pm \phantom {0}3 (\mathrm{lumi}) \pm 3 (\mathrm{BR})^{+28}_{-26} (\mathrm{extrap})\)

The production cross sections per unit of rapidity, \(\mathrm{d}\sigma /\mathrm{d}y\), at mid-rapidity were computed for each meson species by extrapolating the visible cross section to the full \(p_\mathrm{T}\) range. The extrapolation factor for a given D-meson species was defined as the ratio between the total production cross section in \(|y|<0.5\) and that in the experimentally covered phase space, both of them calculated with the FONLL central parameters. The systematic uncertainty on the extrapolation factor was estimated by considering the contributions due to (i) the uncertainties on the CTEQ6.6 PDFs [49] and (ii) the variation of the charm-quark mass and the renormalisation and factorisation scales in the FONLL calculation, as proposed in [7]. For \(\mathrm{D^0}\) mesons, which are measured down to \(p_\mathrm{T}=0\), the extrapolation factor accounts only for the very small contribution of D-mesons with \(p_\mathrm{T}>36~{\mathrm {GeV}}/c\) and it has therefore a value very close to unity with negligible uncertainty. In the case of \(\mathrm{D_s^+}\) mesons, for which a FONLL prediction is not available, the central value of the extrapolation factor was computed from the prediction based on the \(p_\mathrm{T}\)-differential cross section of charm quarks from FONLL, the fractions \(f({\mathrm{c}\rightarrow \mathrm{D_s^+}})\) and \(f({\mathrm{c}\rightarrow \mathrm{D}_\mathrm{s}^{*+}})\) from ALEPH [54], and the fragmentation functions from [57], which have one parameter, r, that was set to 0.1 as done in FONLL [53]. The \({\mathrm{D}}_\mathrm{s}^{*+}\) mesons produced in the c quark fragmentation were made to decay with PYTHIA and the resulting \(\mathrm{D_s^+}\) mesons were summed to the primary ones to obtain the prompt yield. An additional contribution to the systematic uncertainty was assigned for \(\mathrm{D_s^+}\) mesons based on the envelope of the results obtained using the FONLL \(p_\mathrm{T}\)-differential cross sections of \(\mathrm{D^0}\), \(\mathrm{D^+}\) and \(\mathrm{D^{*+}}\) mesons to compute the \(\mathrm{D_s^+}\) extrapolation factor. The resulting values for the extrapolation factors and for the prompt D-meson production cross sections per unit of rapidity \(\mathrm{d}\sigma /\mathrm{d}y\) are reported in Table 4.

The \(\mathrm{c}\overline{\mathrm{c}}\) production cross section per unit of rapidity at mid-rapidity (\(|y|<0.5\)) was calculated by dividing the prompt \(\mathrm{D^0}\)-meson cross section by the fraction of charm quarks hadronising into \(\mathrm{D^0}\) mesons \(f(c\rightarrow \mathrm{D^0})\) and correcting for the different shapes of the distributions of \(y_{\mathrm{D^0}}\) and \(y_{\mathrm{c}\overline{\mathrm{c}}}\) (\(\mathrm{c}\overline{\mathrm{c}}\) pair rapidity). The correction factor and its uncertainty were extracted from FONLL and MNR NLO pQCD [58] calculations together with PYTHIA 6 [38] and POWHEG [59] simulations, as described in detail in Ref. [17]. For the fragmentation fraction, the value \(f(\mathrm{c}\rightarrow \mathrm{D^0})=0.542 \pm 0.024\) derived in Ref. [51] by averaging the measurements from e\(^+\)e\(^-\) collisions at LEP was used. As pointed out in Refs. [60, 61], measurements in e\(^+\)e\(^-\), ep and pp collisions agree within uncertainties, supporting the hypothesis that fragmentation is independent of the specific production process.1 The resulting \(\mathrm{c}\overline{\mathrm{c}}\) cross section per unit of rapidity at mid-rapidity is:
$$\begin{aligned}&\left. \mathrm{d}\sigma ^{\mathrm{c}\overline{\mathrm{c}}}_\mathrm{pp,\,7\,TeV}/\mathrm{d}y \, \right| _{|y|<0.5} =954 \pm 69 \,(\mathrm{stat}) \pm 74\,(\mathrm{syst})\nonumber \\&\quad \pm \, 33\,(\mathrm{lumi}) \pm 42\,(\mathrm{FF}) \pm 31\,(\mathrm{rap.shape})~\upmu \mathrm{b}. \end{aligned}$$
(5)
We verified that the precision of the \(\mathrm{c}\overline{\mathrm{c}}\) production cross-section determination does not improve if the results calculated from \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) mesons, which have significantly larger extrapolation uncertainties as compared to the \(\mathrm{D^0}\) one, are included via a weighted average procedure, as done in Ref. [15]. The total production cross section of prompt \(\mathrm{D^0}\) mesons (average of particles and antiparticles) was calculated by extrapolating to full phase space the cross section measured at mid-rapidity. The extrapolation factor was defined as the ratio of the \(\mathrm{D^0}\) production cross sections in full rapidity and in \(|y|<0.5\) calculated with the FONLL central parameters: \(8.56 ^{+2.51}_{-0.42}\). The systematic uncertainty on the extrapolation factor was estimated with the same procedure described above for the \(p_\mathrm{T}\) extrapolation. The resulting cross section is:
$$\begin{aligned}&\sigma ^{\mathrm{prompt}\,\mathrm{D}^0}_{\mathrm{pp},\,7\,\mathrm{TeV}}= 4.28 \pm 0.31\,(\mathrm{stat}) \, \pm 0.33\,(\mathrm{syst})\,^{+1.26}_{-0.24}\,(\mathrm{extr.})\nonumber \\&\quad \pm \, 0.15\,(\mathrm{lumi}) \pm 0.04\,(\mathrm{BR})~\mathrm{mb}. \end{aligned}$$
(6)
The total charm production cross section was calculated by dividing the total prompt \(\mathrm{D^0}\)-meson production cross section by the fragmentation fraction reported above. The resulting \(\mathrm{c}\overline{\mathrm{c}}\) production cross section in pp collisions at \(\sqrt{s}=7~{\mathrm {TeV}}\) is:
$$\begin{aligned}&\sigma ^{\mathrm{c}\overline{\mathrm{c}}}_{\mathrm{pp},\,7\,\mathrm{TeV}}(\mathrm{ALICE})= 7.89 \pm 0.57 \,(\mathrm{stat.})\nonumber \\&\quad \pm \, 0.61\,(\mathrm{syst.}) \,^{+2.32}_{-0.45} (\mathrm{extr.}) \pm 0.28\,(\mathrm{lumi.}) \pm 0.35\,(\mathrm{FF})~\mathrm{mb},\nonumber \\ \end{aligned}$$
(7)
which is consistent with the value of Ref. [17] but has smaller statistical and systematic uncertainties. It is also compatible within uncertainties with the total charm production cross section reported by the ATLAS collaboration [13], which is calculated from \(\mathrm{D^+}\) and \(\mathrm{D^{*+}}\) measurements in \(|\eta |<2.1\) and \(p_\mathrm{T}>3.5~{\mathrm {GeV}}/c\) and has larger uncertainties on the extrapolation to full kinematic phase space as compared to our result.
A more precise determination of the \(\mathrm{c}\overline{\mathrm{c}}\) production cross section can be obtained by summing our measurement of the prompt \(\mathrm{D^0}\)-meson cross section in \(|y|<0.5\) and the LHCb result in \(2<y<4.5\) for \(0<p_\mathrm{T}<8~{\mathrm {GeV}}/c\) [19], and extrapolating to full rapidity and \(p_\mathrm{T}\) via the ratio of FONLL calculations of the cross sections in full phase space and in the measured y and \(p_\mathrm{T}\) intervals exploiting the symmetry around \(y=0\). The result for the \(\mathrm{c}\overline{\mathrm{c}}\) production cross section is:
$$\begin{aligned}&\sigma ^{\mathrm{c}\overline{\mathrm{c}}}_{\mathrm{pp},\,7\,\mathrm{TeV}}(\mathrm{ALICE,LHCb})= 7.44 \pm 0.14 \,(\mathrm{stat.})\nonumber \\&\quad \pm \, 0.46\,(\mathrm{syst.})\,^{+0.13}_{-0.07} (\mathrm{extr.}) \, \pm 0.33\,(\mathrm{FF})~\mathrm{mb}, \end{aligned}$$
(8)
where the +0.13 mb extrapolation uncertainty is determined by FONLL calculations with factorisation scale \(\mu _\mathrm{F}=0.5 \,m_\mathrm{T}\), which do not describe the measured central-to-forward ratios of Fig. 9. If this \(\mu _\mathrm{F}\) value is not considered, the extrapolation uncertainty is reduced to \(\pm 0.07\) mb.

5 Summary

We have presented a new measurement of the inclusive \(p_\mathrm{T}\)-differential production cross sections of prompt \(\mathrm{D^0}\), \(\mathrm{D^+}\), \(\mathrm{D^{*+}}\) and \(\mathrm{D_s^+}\) mesons at mid-rapidity (\(|y|<0.5\)) in pp collisions at a centre-of-mass energy of \(\sqrt{s}=7~{\mathrm {TeV}}\). The measurements cover the transverse-momentum interval \(0<p_\mathrm{T}<36~{\mathrm {GeV}}/c\) for \(\mathrm{D^0}\) mesons, \(1<p_\mathrm{T}<24~{\mathrm {GeV}}/c\) for \(\mathrm{D^+}\) and \(\mathrm{D^{*+}}\) mesons, and \(2<p_\mathrm{T}<12~{\mathrm {GeV}}/c\) for \(\mathrm{D_s^+}\) mesons. As compared to previously published results based on the same data sample [14, 16], the present results have an extended \(p_\mathrm{T}\) coverage and total uncertainties reduced by a factor of about 1.5–4 depending on the D-meson species and \(p_\mathrm{T}\). The measurements cover complementary ranges in \(p_\mathrm{T}\) and y with respect to those of the ATLAS (\(3.5<p_\mathrm{T}<100~{\mathrm {GeV}}/c\), \(|\eta |<2.1\) [13]) and LHCb (\(0<p_\mathrm{T}<8~{\mathrm {GeV}}/c\), \(2<y<4.5\) [19]) Collaborations at the same centre-of-mass energy. The \(p_\mathrm{T}\)-differential cross sections are described within uncertainties in the full \(p_\mathrm{T}\) range by the FONLL and GM-VFNS perturbative QCD calculations, which are based on collinear factorisation, while a leading-order calculation based on \(k_\mathrm{T}\) factorisation underestimates the measured cross sections for \(2<p_\mathrm{T}<10~{\mathrm {GeV}}/c\). The \(p_\mathrm{T}\)-differential ratios of our measurement at mid-rapidity and LHCb measurements at forward rapidity [19] are described by FONLL calculations. These central-to-forward ratios, once complemented with similar measurements at different centre-of-mass energies, could provide sensitivity to the gluon PDF at small values of Bjorken-x [22]. The ratios of the cross sections of the four D-meson species were found to be compatible with the LHCb measurements at forward rapidity and different collision energies as well as with results from \(\mathrm{e^+e^-}\) collisions, indicating that the fragmentation fractions of charm quarks into different D-meson species do not vary substantially with rapidity, collision energy and colliding system.

The new measurement also allowed for a more accurate determination of the \(p_\mathrm{T}\)-integrated \(\mathrm{c}\overline{\mathrm{c}}\) production cross section at mid-rapidity in pp collisions at \(\sqrt{s}=7~{\mathrm {TeV}}\):
$$\begin{aligned} \left. \mathrm{d}\sigma ^{\mathrm{c}\overline{\mathrm{c}}}_\mathrm{pp,\,7\,TeV}/\mathrm{d}y \, \right| _{|y|<0.5} = 954 \pm 69 \,(\mathrm{stat})\, \pm 97 \,(\mathrm{tot.~syst.}) ~\upmu \mathrm{b}. \end{aligned}$$
In particular, the total systematic uncertainty of this measurement is about \(\pm 10\%\), while it was \(^{+13}_{-21}\%\) for the previously-published measurement [17].
The total \(\mathrm{c}\overline{\mathrm{c}}\) production cross section in full phase space was calculated by combining the above measurement at mid-rapidity with that at forward rapidity by the LHCb Collaboration:
$$\begin{aligned} \sigma ^{\mathrm{c}\overline{\mathrm{c}}}_{\mathrm{pp},\,7\,\mathrm{TeV}}(\mathrm{ALICE,LHCb})= & {} 7.44 \pm 0.14 \,(\mathrm{stat.})\nonumber \\&\pm \, 0.58 \,(\mathrm{tot.~syst.})~\mathrm{mb}. \end{aligned}$$

Footnotes

  1. 1.

    In Ref. [61], an average of the charm fragmentation fractions over the measurements from all collision systems is calculated, imposing the constraint that the sum of all weakly-decaying charmed hadrons is unity, which results in \(f(c\rightarrow \mathrm{D^0})=0.6086 \pm 0.0076\) (about 11% larger that the value from [51]).

Notes

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research|Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), UK; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), USA.

References

  1. 1.
    J.C. Collins, D.E. Soper, G.F. Sterman, Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys. 5, 1–91 (1989). arXiv:hep-ph/0409313 [hep-ph]ADSCrossRefMATHGoogle Scholar
  2. 2.
    S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production. Nucl. Phys. B 366, 135–188 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Inclusive D*+- production in p anti-p collisions with massive charm quarks. Phys. Rev. D 71, 014018 (2005). arXiv:hep-ph/0410289 [hep-ph]
  4. 4.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Collinear subtractions in hadroproduction of heavy quarks. Eur. Phys. J. C 41, 199–212 (2005). arXiv:hep-ph/0502194 [hep-ph]
  5. 5.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Inclusive charmed-meson production at the CERN LHC. Eur. Phys. J. C 72, 2082 (2012). arXiv:1202.0439 [hep-ph]ADSCrossRefGoogle Scholar
  6. 6.
    M. Cacciari, M. Greco, P. Nason, The \(p_{{\rm T}}\) spectrum in heavy flavor hadroproduction. JHEP 05, 007 (1998). arXiv:hep-ph/9803400 [hep-ph]
  7. 7.
    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason, G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC. JHEP 10, 137 (2012). arXiv:1205.6344 [hep-ph]ADSCrossRefGoogle Scholar
  8. 8.
    M. Luszczak, R. Maciula, A. Szczurek, Nonphotonic electrons at RHIC within k(t)-factorization approach and with experimental semileptonic decay functions. Phys. Rev. D 79, 034009 (2009). arXiv:0807.5044 [hep-ph]ADSCrossRefGoogle Scholar
  9. 9.
    R. Maciula, A. Szczurek, Open charm production at the LHC—\(k_{t}\)-factorization approach. Phys. Rev. D 87(9), 094022 (2013). arXiv:1301.3033 [hep-ph]ADSCrossRefGoogle Scholar
  10. 10.
    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions. Eur. Phys. J. C 76(3), 107 (2016). arXiv:1506.03981 [nucl-ex]ADSCrossRefGoogle Scholar
  11. 11.
    STAR Collaboration, L. Adamczyk et al., Measurements of \(D^0\) and \(D^{*+}\) production in pp collisions at \(\sqrt{s}=200\) GeV. Phys. Rev. D 86, 072013 (2012). arXiv:1204.4244 [nucl-ex]
  12. 12.
    CDF Collaboration, D. Acosta et al., Measurement of prompt charm meson production cross sections in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. Lett. 91, 241804 (2003). arXiv:hep-ex/0307080 [hep-ex]
  13. 13.
    ATLAS Collaboration, G. Aad et al., Measurement of \(D^{*\pm }\), \(D^\pm \) and \(D_s^\pm \) meson production cross sections in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Nucl. Phys. B 907, 717–763 (2016). arXiv:1512.02913 [hep-ex]
  14. 14.
    ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at \(\sqrt{s} = 7\) TeV. JHEP 01, 128 (2012). arXiv:1111.1553 [hep-ex]
  15. 15.
    ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at \(\sqrt{s}=2.76\) TeV. JHEP 07, 191 (2012). arXiv:1205.4007 [hep-ex]
  16. 16.
    ALICE Collaboration, B. Abelev et al., \(D_{s}^+\) meson production at central rapidity in proton–proton collisions at \(\sqrt{s}=7\) TeV. Phys. Lett. B 718, 279–294 (2012). arXiv:1208.1948 [hep-ex]
  17. 17.
    ALICE Collaboration, J. Adam et al., D-meson production in p-Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) TeV and in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. C 94(5), 054908 (2016). arXiv:1605.07569 [nucl-ex]
  18. 18.
    CMS Collaboration, \({{{\rm D}}}^0\) meson nuclear modification factor in PbPb collisions at \(\sqrt{s_{{\rm NN}}} = 5.02~{{\rm TeV}}\). Technical report. CMS-PAS-HIN-16-001, CERN, Geneva (2016). http://cds.cern.ch/record/2157844
  19. 19.
    LHCb Collaboration, R. Aaij et al., Prompt charm production in pp collisions at \(\sqrt{s}=7\) TeV. Nucl. Phys. B 871, 1–20 (2013). arXiv:1302.2864 [hep-ex]
  20. 20.
    LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross-sections in \(pp\) collisions at \(\sqrt{s} = 5\) TeV. JHEP 06, 147 (2017). doi: 10.1007/JHEP06(2017)147 arXiv:1610.02230 [hep-ex]
  21. 21.
    LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross-sections in \(pp\) collisions at \( \sqrt{s}=13\) TeV. JHEP 03, 159 (2016), arXiv:1510.01707 [hep-ex] [Erratum: JHEP 09, 013 (2016)]
  22. 22.
    M. Cacciari, M.L. Mangano, P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at \(\sqrt{S}=7\) and 13 TeV. Eur. Phys. J. C 75(12), 610 (2015). arXiv:1507.06197 [hep-ph]ADSCrossRefGoogle Scholar
  23. 23.
    A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic, A. Stasto, Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. JHEP 06, 110 (2015). arXiv:1502.01076 [hep-ph]ADSCrossRefGoogle Scholar
  24. 24.
    A. Bhattacharya, R. Enberg, Y.S. Jeong, C.S. Kim, M.H. Reno, I. Sarcevic, A. Stasto, Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects. JHEP 11, 167 (2016). arXiv:1607.00193 [hep-ph]ADSCrossRefGoogle Scholar
  25. 25.
    R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). arXiv:1506.08025 [hep-ph]ADSCrossRefGoogle Scholar
  26. 26.
    M.V. Garzelli, S. Moch, G. Sigl, Lepton fluxes from atmospheric charm revisited. JHEP 10, 115 (2015). arXiv:1507.01570 [hep-ph]ADSCrossRefGoogle Scholar
  27. 27.
    F. Prino, R. Rapp, Open heavy flavor in QCD matter and in nuclear collisions. J. Phys. G 43(9), 093002 (2016). arXiv:1603.00529 [nucl-ex]ADSCrossRefGoogle Scholar
  28. 28.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, The thermal model on the verge of the ultimate test: particle production in Pb–Pb collisions at the LHC. J. Phys. G 38, 124081 (2011). arXiv:1106.6321 [nucl-th]
  29. 29.
    X. Zhao, R. Rapp, Medium modifications and production of charmonia at LHC. Nucl. Phys. A 859, 114–125 (2011). arXiv:1102.2194 [hep-ph]ADSCrossRefGoogle Scholar
  30. 30.
    Y.-P. Liu, Z. Qu, N. Xu, P.-F. Zhuang, \(J/\psi \) transverse momentum distribution in high energy nuclear collisions at RHIC. Phys. Lett. B 678, 72–76 (2009). arXiv:0901.2757 [nucl-th]
  31. 31.
    ALICE Collaboration, B.B. Abelev et al., Centrality, rapidity and transverse momentum dependence of \(J/\psi \) suppression in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 734, 314–327 (2014). arXiv:1311.0214 [nucl-ex]
  32. 32.
    ALICE Collaboration, J. Adam et al., Differential studies of inclusive \(J/\psi \) and \(\psi (2S)\) production at forward rapidity in Pb–Pb collisions at \( \sqrt{s_{{\rm {NN}}}}=2.76\) TeV. JHEP 05, 179 (2016). arXiv:1506.08804 [nucl-ex]
  33. 33.
    ALICE Collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008)Google Scholar
  34. 34.
    ALICE Collaboration, B.B. Abelev et al., Performance of the ALICE experiment at the CERN LHC. Int. J. Mod. Phys. A 29, 1430044 (2014). arXiv:1402.4476 [nucl-ex]
  35. 35.
    ALICE Collaboration, J. Adam et al., Determination of the event collision time with the ALICE detector at the LHC. Eur. Phys. J. Plus 132(2), 99 (2017). arXiv:1610.03055 [physics.ins-det]
  36. 36.
    C. Patrignani et al., Review of particle physics. Chin. Phys. C 40(10), 100001 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    ALICE Collaboration, B. Abelev et al., Measurement of inelastic, single- and double-diffraction cross sections in proton–proton collisions at the LHC with ALICE. Eur. Phys. J. C 73(6), 2456 (2013). arXiv:1208.4968 [hep-ex]
  38. 38.
    T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]
  39. 39.
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010). arXiv:1005.3457 [hep-ph]ADSCrossRefGoogle Scholar
  40. 40.
    R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. Urban, GEANT detector description and simulation tool. Technical report. CERN (1994). http://cds.cern.ch/record/1082634
  41. 41.
    M. Cacciari, S. Frixione, P. Nason, The p(T) spectrum in heavy flavor photoproduction. JHEP 03, 006 (2001). arXiv:hep-ph/0102134 [hep-ph]
  42. 42.
    D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152–155 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    LHCb Collaboration, R. Aaij et al., Measurement of B meson production cross-sections in proton–proton collisions at \(\sqrt{s}=7\) TeV. JHEP 08, 117 (2013). arXiv:1306.3663 [hep-ex]
  44. 44.
    CMS Collaboration, S. Chatrchyan et al., Measurement of the strange \(B\) meson production cross section with J/Psi \(\phi \) decays in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. D 84, 052008 (2011). arXiv:1106.4048 [hep-ex]
  45. 45.
    CMS Collaboration, V. Khachatryan et al., Measurement of the \(B^+\) production cross section in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 106, 112001 (2011). arXiv:1101.0131 [hep-ex]
  46. 46.
    CMS Collaboration, S. Chatrchyan et al., Measurement of the \(B^0\) production cross section in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 106, 252001 (2011). arXiv:1104.2892 [hep-ex]
  47. 47.
    ALICE Collaboration, B. Abelev et al., Measurement of electrons from beauty hadron decays in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Lett. B 721, 13–23 (2013). arXiv:1208.1902 [hep-ex]
  48. 48.
    ALICE Collaboration, B. Abelev et al., Measurement of prompt \(J/\psi \) and beauty hadron production cross sections at mid-rapidity in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. JHEP 11, 065 (2012). arXiv:1205.5880 [hep-ex]
  49. 49.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). arXiv:hep-ph/0201195 [hep-ph]
  50. 50.
    L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015). arXiv:1412.3989 [hep-ph]ADSCrossRefGoogle Scholar
  51. 51.
    L. Gladilin, Fragmentation fractions of \(c\) and \(b\) quarks into charmed hadrons at LEP. Eur. Phys. J. C 75(1), 19 (2015). arXiv:1404.3888 [hep-ex]ADSCrossRefGoogle Scholar
  52. 52.
    T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Charmed-meson fragmentation functions with finite-mass corrections. Nucl. Phys. B 799, 34–59 (2008). arXiv:0712.0481 [hep-ph]ADSCrossRefGoogle Scholar
  53. 53.
    M. Cacciari, P. Nason, Charm cross-sections for the Tevatron Run II. JHEP 09, 006 (2003). arXiv:hep-ph/0306212 [hep-ph]
  54. 54.
    ALEPH Collaboration, R. Barate et al., Study of charm production in Z decays. Eur. Phys. J. C 16, 597–611 (2000). arXiv:hep-ex/9909032 [hep-ex]
  55. 55.
    B.A. Kniehl, G. Kramer, Charmed-hadron fragmentation functions from CERN LEP1 revisited. Phys. Rev. D 74, 037502 (2006). arXiv:hep-ph/0607306 [hep-ph]
  56. 56.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Scaling violations in inclusive e+ e- annihilation spectra. Phys. Rev. D 27, 105 (1983)ADSCrossRefGoogle Scholar
  57. 57.
    E. Braaten, K.-M. Cheung, S. Fleming, T.C. Yuan, Perturbative QCD fragmentation functions as a model for heavy quark fragmentation. Phys. Rev. D 51, 4819–4829 (1995). arXiv:hep-ph/9409316 [hep-ph]
  58. 58.
    M.L. Mangano, P. Nason, G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295–345 (1992)ADSCrossRefGoogle Scholar
  59. 59.
    S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP 09, 126 (2007). arXiv:0707.3088 [hep-ph]ADSCrossRefGoogle Scholar
  60. 60.
    ZEUS Collaboration, H. Abramowicz et al., Measurement of charm fragmentation fractions in photoproduction at HERA. JHEP 09, 058 (2013). arXiv:1306.4862 [hep-ex]
  61. 61.
    M. Lisovyi, A. Verbytskyi, O. Zenaiev, Combined analysis of charm-quark fragmentation-fraction measurements. Eur. Phys. J. C 76(7), 397 (2016). arXiv:1509.01061 [hep-ex]ADSCrossRefGoogle Scholar

Copyright information

© CERN for the benefit of the ALICE collaboration 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Authors and Affiliations

  • S. Acharya
    • 139
  • D. Adamová
    • 87
  • M. M. Aggarwal
    • 91
  • G. Aglieri Rinella
    • 34
  • M. Agnello
    • 30
  • N. Agrawal
    • 47
  • Z. Ahammed
    • 139
  • N. Ahmad
    • 17
  • S. U. Ahn
    • 69
  • S. Aiola
    • 143
  • A. Akindinov
    • 54
  • S. N. Alam
    • 139
  • D. S. D. Albuquerque
    • 124
  • D. Aleksandrov
    • 83
  • B. Alessandro
    • 113
  • D. Alexandre
    • 104
  • R. Alfaro Molina
    • 64
  • A. Alici
    • 12
    • 26
    • 107
  • A. Alkin
    • 3
  • J. Alme
    • 21
  • T. Alt
    • 41
  • I. Altsybeev
    • 138
  • C. Alves Garcia Prado
    • 123
  • M. An
    • 7
  • C. Andrei
    • 80
  • H. A. Andrews
    • 104
  • A. Andronic
    • 100
  • V. Anguelov
    • 96
  • C. Anson
    • 90
  • T. Antičić
    • 101
  • F. Antinori
    • 110
  • P. Antonioli
    • 107
  • R. Anwar
    • 126
  • L. Aphecetche
    • 116
  • H. Appelshäuser
    • 60
  • S. Arcelli
    • 26
  • R. Arnaldi
    • 113
  • O. W. Arnold
    • 35
    • 97
  • I. C. Arsene
    • 20
  • M. Arslandok
    • 60
  • B. Audurier
    • 116
  • A. Augustinus
    • 34
  • R. Averbeck
    • 100
  • M. D. Azmi
    • 17
  • A. Badalà
    • 109
  • Y. W. Baek
    • 68
  • S. Bagnasco
    • 113
  • R. Bailhache
    • 60
  • R. Bala
    • 93
  • A. Baldisseri
    • 65
  • M. Ball
    • 44
  • R. C. Baral
    • 57
  • A. M. Barbano
    • 25
  • R. Barbera
    • 27
  • F. Barile
    • 32
    • 106
  • L. Barioglio
    • 25
  • G. G. Barnaföldi
    • 142
  • L. S. Barnby
    • 34
    • 104
  • V. Barret
    • 71
  • P. Bartalini
    • 7
  • K. Barth
    • 34
  • J. Bartke
    • 120
  • E. Bartsch
    • 60
  • M. Basile
    • 26
  • N. Bastid
    • 71
  • S. Basu
    • 139
  • B. Bathen
    • 61
  • G. Batigne
    • 116
  • A. Batista Camejo
    • 71
  • B. Batyunya
    • 67
  • P. C. Batzing
    • 20
  • I. G. Bearden
    • 84
  • H. Beck
    • 96
  • C. Bedda
    • 30
  • N. K. Behera
    • 50
  • I. Belikov
    • 135
  • F. Bellini
    • 26
  • H. Bello Martinez
    • 2
  • R. Bellwied
    • 126
  • L. G. E. Beltran
    • 122
  • V. Belyaev
    • 76
  • G. Bencedi
    • 142
  • S. Beole
    • 25
  • A. Bercuci
    • 80
  • Y. Berdnikov
    • 89
  • D. Berenyi
    • 142
  • R. A. Bertens
    • 53
    • 129
  • D. Berzano
    • 34
  • L. Betev
    • 34
  • A. Bhasin
    • 93
  • I. R. Bhat
    • 93
  • A. K. Bhati
    • 91
  • B. Bhattacharjee
    • 43
  • J. Bhom
    • 120
  • L. Bianchi
    • 126
  • N. Bianchi
    • 73
  • C. Bianchin
    • 141
  • J. Bielčík
    • 38
  • J. Bielčíková
    • 87
  • A. Bilandzic
    • 35
    • 97
  • G. Biro
    • 142
  • R. Biswas
    • 4
  • S. Biswas
    • 4
  • J. T. Blair
    • 121
  • D. Blau
    • 83
  • C. Blume
    • 60
  • G. Boca
    • 136
  • F. Bock
    • 75
    • 96
  • A. Bogdanov
    • 76
  • L. Boldizsár
    • 142
  • M. Bombara
    • 39
  • G. Bonomi
    • 137
  • M. Bonora
    • 34
  • J. Book
    • 60
  • H. Borel
    • 65
  • A. Borissov
    • 99
  • M. Borri
    • 128
  • E. Botta
    • 25
  • C. Bourjau
    • 84
  • P. Braun-Munzinger
    • 100
  • M. Bregant
    • 123
  • T. A. Broker
    • 60
  • T. A. Browning
    • 98
  • M. Broz
    • 38
  • E. J. Brucken
    • 45
  • E. Bruna
    • 113
  • G. E. Bruno
    • 32
  • D. Budnikov
    • 102
  • H. Buesching
    • 60
  • S. Bufalino
    • 30
  • P. Buhler
    • 115
  • S. A. I. Buitron
    • 62
  • P. Buncic
    • 34
  • O. Busch
    • 132
  • Z. Buthelezi
    • 66
  • J. B. Butt
    • 15
  • J. T. Buxton
    • 18
  • J. Cabala
    • 118
  • D. Caffarri
    • 34
  • H. Caines
    • 143
  • A. Caliva
    • 53
  • E. Calvo Villar
    • 105
  • P. Camerini
    • 24
  • A. A. Capon
    • 115
  • F. Carena
    • 34
  • W. Carena
    • 34
  • F. Carnesecchi
    • 12
    • 26
  • J. Castillo Castellanos
    • 65
  • A. J. Castro
    • 129
  • E. A. R. Casula
    • 23
    • 108
  • C. Ceballos Sanchez
    • 9
  • P. Cerello
    • 113
  • B. Chang
    • 127
  • S. Chapeland
    • 34
  • M. Chartier
    • 128
  • J. L. Charvet
    • 65
  • S. Chattopadhyay
    • 139
  • S. Chattopadhyay
    • 103
  • A. Chauvin
    • 35
    • 97
  • M. Cherney
    • 90
  • C. Cheshkov
    • 134
  • B. Cheynis
    • 134
  • V. Chibante Barroso
    • 34
  • D. D. Chinellato
    • 124
  • S. Cho
    • 50
  • P. Chochula
    • 34
  • K. Choi
    • 99
  • M. Chojnacki
    • 84
  • S. Choudhury
    • 139
  • P. Christakoglou
    • 85
  • C. H. Christensen
    • 84
  • P. Christiansen
    • 33
  • T. Chujo
    • 132
  • S. U. Chung
    • 99
  • C. Cicalo
    • 108
  • L. Cifarelli
    • 12
    • 26
  • F. Cindolo
    • 107
  • J. Cleymans
    • 92
  • F. Colamaria
    • 32
  • D. Colella
    • 34
    • 55
  • A. Collu
    • 75
  • M. Colocci
    • 26
  • M. Concas
    • 113
  • G. Conesa Balbastre
    • 72
  • Z. Conesa del Valle
    • 51
  • M. E. Connors
    • 143
  • J. G. Contreras
    • 38
  • T. M. Cormier
    • 88
  • Y. Corrales Morales
    • 113
  • I. Cortés Maldonado
    • 2
  • P. Cortese
    • 31
  • M. R. Cosentino
    • 125
  • F. Costa
    • 34
  • S. Costanza
    • 136
  • J. Crkovská
    • 51
  • P. Crochet
    • 71
  • E. Cuautle
    • 62
  • L. Cunqueiro
    • 61
  • T. Dahms
    • 35
    • 97
  • A. Dainese
    • 110
  • M. C. Danisch
    • 96
  • A. Danu
    • 58
  • D. Das
    • 103
  • I. Das
    • 103
  • S. Das
    • 4
  • A. Dash
    • 81
  • S. Dash
    • 47
  • S. De
    • 48
    • 123
  • A. De Caro
    • 29
  • G. de Cataldo
    • 106
  • C. de Conti
    • 123
  • J. de Cuveland
    • 41
  • A. De Falco
    • 23
  • D. De Gruttola
    • 12
    • 29
  • N. De Marco
    • 113
  • S. De Pasquale
    • 29
  • R. D. De Souza
    • 124
  • H. F. Degenhardt
    • 123
  • A. Deisting
    • 96
    • 100
  • A. Deloff
    • 79
  • C. Deplano
    • 85
  • P. Dhankher
    • 47
  • D. Di Bari
    • 32
  • A. Di Mauro
    • 34
  • P. Di Nezza
    • 73
  • B. Di Ruzza
    • 110
  • M. A. Diaz Corchero
    • 10
  • T. Dietel
    • 92
  • P. Dillenseger
    • 60
  • R. Divià
    • 34
  • Ø. Djuvsland
    • 21
  • A. Dobrin
    • 34
    • 58
  • D. Domenicis Gimenez
    • 123
  • B. Dönigus
    • 60
  • O. Dordic
    • 20
  • T. Drozhzhova
    • 60
  • A. K. Dubey
    • 139
  • A. Dubla
    • 100
  • L. Ducroux
    • 134
  • A. K. Duggal
    • 91
  • P. Dupieux
    • 71
  • R. J. Ehlers
    • 143
  • D. Elia
    • 106
  • E. Endress
    • 105
  • H. Engel
    • 59
  • E. Epple
    • 143
  • B. Erazmus
    • 116
  • F. Erhardt
    • 133
  • B. Espagnon
    • 51
  • S. Esumi
    • 132
  • G. Eulisse
    • 34
  • J. Eum
    • 99
  • D. Evans
    • 104
  • S. Evdokimov
    • 114
  • L. Fabbietti
    • 35
    • 97
  • J. Faivre
    • 72
  • A. Fantoni
    • 73
  • M. Fasel
    • 75
    • 88
  • L. Feldkamp
    • 61
  • A. Feliciello
    • 113
  • G. Feofilov
    • 138
  • J. Ferencei
    • 87
  • A. Fernández Téllez
    • 2
  • E. G. Ferreiro
    • 16
  • A. Ferretti
    • 25
  • A. Festanti
    • 28
  • V. J. G. Feuillard
    • 65
    • 71
  • J. Figiel
    • 120
  • M. A. S. Figueredo
    • 123
  • S. Filchagin
    • 102
  • D. Finogeev
    • 52
  • F. M. Fionda
    • 23
  • E. M. Fiore
    • 32
  • M. Floris
    • 34
  • S. Foertsch
    • 66
  • P. Foka
    • 100
  • S. Fokin
    • 83
  • E. Fragiacomo
    • 112
  • A. Francescon
    • 34
  • A. Francisco
    • 116
  • U. Frankenfeld
    • 100
  • G. G. Fronze
    • 25
  • U. Fuchs
    • 34
  • C. Furget
    • 72
  • A. Furs
    • 52
  • M. Fusco Girard
    • 29
  • J. J. Gaardhøje
    • 84
  • M. Gagliardi
    • 25
  • A. M. Gago
    • 105
  • K. Gajdosova
    • 84
  • M. Gallio
    • 25
  • C. D. Galvan
    • 122
  • P. Ganoti
    • 78
  • C. Gao
    • 7
  • C. Garabatos
    • 100
  • E. Garcia-Solis
    • 13
  • K. Garg
    • 27
  • P. Garg
    • 48
  • C. Gargiulo
    • 34
  • P. Gasik
    • 35
    • 97
  • E. F. Gauger
    • 121
  • M. B. Gay Ducati
    • 63
  • M. Germain
    • 116
  • P. Ghosh
    • 139
  • S. K. Ghosh
    • 4
  • P. Gianotti
    • 73
  • P. Giubellino
    • 34
    • 113
  • P. Giubilato
    • 28
  • E. Gladysz-Dziadus
    • 120
  • P. Glässel
    • 96
  • D. M. Goméz Coral
    • 64
  • A. Gomez Ramirez
    • 59
  • A. S. Gonzalez
    • 34
  • V. Gonzalez
    • 10
  • P. González-Zamora
    • 10
  • S. Gorbunov
    • 41
  • L. Görlich
    • 120
  • S. Gotovac
    • 119
  • V. Grabski
    • 64
  • L. K. Graczykowski
    • 140
  • K. L. Graham
    • 104
  • L. Greiner
    • 75
  • A. Grelli
    • 53
  • C. Grigoras
    • 34
  • V. Grigoriev
    • 76
  • A. Grigoryan
    • 1
  • S. Grigoryan
    • 67
  • N. Grion
    • 112
  • J. M. Gronefeld
    • 100
  • F. Grosa
    • 30
  • J. F. Grosse-Oetringhaus
    • 34
  • R. Grosso
    • 100
  • L. Gruber
    • 115
  • F. R. Grull
    • 59
  • F. Guber
    • 52
  • R. Guernane
    • 72
  • B. Guerzoni
    • 26
  • K. Gulbrandsen
    • 84
  • T. Gunji
    • 131
  • A. Gupta
    • 93
  • R. Gupta
    • 93
  • I. B. Guzman
    • 2
  • R. Haake
    • 34
  • C. Hadjidakis
    • 51
  • H. Hamagaki
    • 77
    • 131
  • G. Hamar
    • 142
  • J. C. Hamon
    • 135
  • J. W. Harris
    • 143
  • A. Harton
    • 13
  • D. Hatzifotiadou
    • 107
  • S. Hayashi
    • 131
  • S. T. Heckel
    • 60
  • E. Hellbär
    • 60
  • H. Helstrup
    • 36
  • A. Herghelegiu
    • 80
  • G. Herrera Corral
    • 11
  • F. Herrmann
    • 61
  • B. A. Hess
    • 95
  • K. F. Hetland
    • 36
  • H. Hillemanns
    • 34
  • B. Hippolyte
    • 135
  • J. Hladky
    • 56
  • B. Hohlweger
    • 97
  • D. Horak
    • 38
  • R. Hosokawa
    • 132
  • P. Hristov
    • 34
  • C. Hughes
    • 129
  • T. J. Humanic
    • 18
  • N. Hussain
    • 43
  • T. Hussain
    • 17
  • D. Hutter
    • 41
  • D. S. Hwang
    • 19
  • R. Ilkaev
    • 102
  • M. Inaba
    • 132
  • M. Ippolitov
    • 76
    • 83
  • M. Irfan
    • 17
  • V. Isakov
    • 52
  • M. S. Islam
    • 48
  • M. Ivanov
    • 34
    • 100
  • V. Ivanov
    • 89
  • V. Izucheev
    • 114
  • B. Jacak
    • 75
  • N. Jacazio
    • 26
  • P. M. Jacobs
    • 75
  • M. B. Jadhav
    • 47
  • S. Jadlovska
    • 118
  • J. Jadlovsky
    • 118
  • S. Jaelani
    • 53
  • C. Jahnke
    • 35
  • M. J. Jakubowska
    • 140
  • M. A. Janik
    • 140
  • P. H. S. Y. Jayarathna
    • 126
  • C. Jena
    • 81
  • S. Jena
    • 126
  • M. Jercic
    • 133
  • R. T. Jimenez Bustamante
    • 100
  • P. G. Jones
    • 104
  • A. Jusko
    • 104
  • P. Kalinak
    • 55
  • A. Kalweit
    • 34
  • J. H. Kang
    • 144
  • V. Kaplin
    • 76
  • S. Kar
    • 139
  • A. Karasu Uysal
    • 70
  • O. Karavichev
    • 52
  • T. Karavicheva
    • 52
  • L. Karayan
    • 96
    • 100
  • E. Karpechev
    • 52
  • U. Kebschull
    • 59
  • R. Keidel
    • 145
  • D. L. D. Keijdener
    • 53
  • M. Keil
    • 34
  • B. Ketzer
    • 44
  • M. Mohisin Khan
    • 17
  • P. Khan
    • 103
  • S. A. Khan
    • 139
  • A. Khanzadeev
    • 89
  • Y. Kharlov
    • 114
  • A. Khatun
    • 17
  • A. Khuntia
    • 48
  • M. M. Kielbowicz
    • 120
  • B. Kileng
    • 36
  • D. Kim
    • 144
  • D. W. Kim
    • 42
  • D. J. Kim
    • 127
  • H. Kim
    • 144
  • J. S. Kim
    • 42
  • J. Kim
    • 96
  • M. Kim
    • 50
  • M. Kim
    • 144
  • S. Kim
    • 19
  • T. Kim
    • 144
  • S. Kirsch
    • 41
  • I. Kisel
    • 41
  • S. Kiselev
    • 54
  • A. Kisiel
    • 140
  • G. Kiss
    • 142
  • J. L. Klay
    • 6
  • C. Klein
    • 60
  • J. Klein
    • 34
  • C. Klein-Bösing
    • 61
  • S. Klewin
    • 96
  • A. Kluge
    • 34
  • M. L. Knichel
    • 96
  • A. G. Knospe
    • 126
  • C. Kobdaj
    • 117
  • M. Kofarago
    • 34
  • T. Kollegger
    • 100
  • A. Kolojvari
    • 138
  • V. Kondratiev
    • 138
  • N. Kondratyeva
    • 76
  • E. Kondratyuk
    • 114
  • A. Konevskikh
    • 52
  • M. Kopcik
    • 118
  • M. Kour
    • 93
  • C. Kouzinopoulos
    • 34
  • O. Kovalenko
    • 79
  • V. Kovalenko
    • 138
  • M. Kowalski
    • 120
  • G. Koyithatta Meethaleveedu
    • 47
  • I. Králik
    • 55
  • A. Kravčáková
    • 39
  • M. Krivda
    • 55
    • 104
  • F. Krizek
    • 87
  • E. Kryshen
    • 89
  • M. Krzewicki
    • 41
  • A. M. Kubera
    • 18
  • V. Kučera
    • 87
  • C. Kuhn
    • 135
  • P. G. Kuijer
    • 85
  • A. Kumar
    • 93
  • J. Kumar
    • 47
  • L. Kumar
    • 91
  • S. Kumar
    • 47
  • S. Kundu
    • 81
  • P. Kurashvili
    • 79
  • A. Kurepin
    • 52
  • A. B. Kurepin
    • 52
  • A. Kuryakin
    • 102
  • S. Kushpil
    • 87
  • M. J. Kweon
    • 50
  • Y. Kwon
    • 144
  • S. L. La Pointe
    • 41
  • P. La Rocca
    • 27
  • C. Lagana Fernandes
    • 123
  • I. Lakomov
    • 34
  • R. Langoy
    • 40
  • K. Lapidus
    • 143
  • C. Lara
    • 59
  • A. Lardeux
    • 20
    • 65
  • A. Lattuca
    • 25
  • E. Laudi
    • 34
  • R. Lavicka
    • 38
  • L. Lazaridis
    • 34
  • R. Lea
    • 24
  • L. Leardini
    • 96
  • S. Lee
    • 144
  • F. Lehas
    • 85
  • S. Lehner
    • 115
  • J. Lehrbach
    • 41
  • R. C. Lemmon
    • 86
  • V. Lenti
    • 106
  • E. Leogrande
    • 53
  • I. León Monzón
    • 122
  • P. Lévai
    • 142
  • S. Li
    • 7
  • X. Li
    • 14
  • J. Lien
    • 40
  • R. Lietava
    • 104
  • S. Lindal
    • 20
  • V. Lindenstruth
    • 41
  • C. Lippmann
    • 100
  • M. A. Lisa
    • 18
  • V. Litichevskyi
    • 45
  • H. M. Ljunggren
    • 33
  • W. J. Llope
    • 141
  • D. F. Lodato
    • 53
  • P. I. Loenne
    • 21
  • V. Loginov
    • 76
  • C. Loizides
    • 75
  • P. Loncar
    • 119
  • X. Lopez
    • 71
  • E. López Torres
    • 9
  • A. Lowe
    • 142
  • P. Luettig
    • 60
  • M. Lunardon
    • 28
  • G. Luparello
    • 24
  • M. Lupi
    • 34
  • T. H. Lutz
    • 143
  • A. Maevskaya
    • 52
  • M. Mager
    • 34
  • S. Mahajan
    • 93
  • S. M. Mahmood
    • 20
  • A. Maire
    • 135
  • R. D. Majka
    • 143
  • M. Malaev
    • 89
  • I. Maldonado Cervantes
    • 62
  • L. Malinina
    • 67
  • D. Mal’Kevich
    • 54
  • P. Malzacher
    • 100
  • A. Mamonov
    • 102
  • V. Manko
    • 83
  • F. Manso
    • 71
  • V. Manzari
    • 106
  • Y. Mao
    • 7
  • M. Marchisone
    • 66
    • 130
  • J. Mareš
    • 56
  • G. V. Margagliotti
    • 24
  • A. Margotti
    • 107
  • J. Margutti
    • 53
  • A. Marín
    • 100
  • C. Markert
    • 121
  • M. Marquard
    • 60
  • N. A. Martin
    • 100
  • P. Martinengo
    • 34
  • J. A. L. Martinez
    • 59
  • M. I. Martínez
    • 2
  • G. Martínez García
    • 116
  • M. Martinez Pedreira
    • 34
  • A. Mas
    • 123
  • S. Masciocchi
    • 100
  • M. Masera
    • 25
  • A. Masoni
    • 108
  • A. Mastroserio
    • 32
  • A. M. Mathis
    • 35
    • 97
  • A. Matyja
    • 120
    • 129
  • C. Mayer
    • 120
  • J. Mazer
    • 129
  • M. Mazzilli
    • 32
  • M. A. Mazzoni
    • 111
  • F. Meddi
    • 22
  • Y. Melikyan
    • 76
  • A. Menchaca-Rocha
    • 64
  • E. Meninno
    • 29
  • J. Mercado Pérez
    • 96
  • M. Meres
    • 37
  • S. Mhlanga
    • 92
  • Y. Miake
    • 132
  • M. M. Mieskolainen
    • 45
  • D. L. Mihaylov
    • 97
  • K. Mikhaylov
    • 54
    • 67
  • L. Milano
    • 75
  • J. Milosevic
    • 20
  • A. Mischke
    • 53
  • A. N. Mishra
    • 48
  • D. Miśkowiec
    • 100
  • J. Mitra
    • 139
  • C. M. Mitu
    • 58
  • N. Mohammadi
    • 53
  • B. Mohanty
    • 81
  • E. Montes
    • 10
  • D. A. Moreira De Godoy
    • 61
  • L. A. P. Moreno
    • 2
  • S. Moretto
    • 28
  • A. Morreale
    • 116
  • A. Morsch
    • 34
  • V. Muccifora
    • 73
  • E. Mudnic
    • 119
  • D. Mühlheim
    • 61
  • S. Muhuri
    • 139
  • M. Mukherjee
    • 4
    • 139
  • J. D. Mulligan
    • 143
  • M. G. Munhoz
    • 123
  • K. Münning
    • 44
  • R. H. Munzer
    • 60
  • H. Murakami
    • 131
  • S. Murray
    • 66
  • L. Musa
    • 34
  • J. Musinsky
    • 55
  • C. J. Myers
    • 126
  • B. Naik
    • 47
  • R. Nair
    • 79
  • B. K. Nandi
    • 47
  • R. Nania
    • 107
  • E. Nappi
    • 106
  • M. U. Naru
    • 15
  • H. Natal da Luz
    • 123
  • C. Nattrass
    • 129
  • S. R. Navarro
    • 2
  • K. Nayak
    • 81
  • R. Nayak
    • 47
  • T. K. Nayak
    • 139
  • S. Nazarenko
    • 102
  • A. Nedosekin
    • 54
  • R. A. Negrao De Oliveira
    • 34
  • L. Nellen
    • 62
  • S. V. Nesbo
    • 36
  • F. Ng
    • 126
  • M. Nicassio
    • 100
  • M. Niculescu
    • 58
  • J. Niedziela
    • 34
  • B. S. Nielsen
    • 84
  • S. Nikolaev
    • 83
  • S. Nikulin
    • 83
  • V. Nikulin
    • 89
  • F. Noferini
    • 12
    • 107
  • P. Nomokonov
    • 67
  • G. Nooren
    • 53
  • J. C. C. Noris
    • 2
  • J. Norman
    • 128
  • A. Nyanin
    • 83
  • J. Nystrand
    • 21
  • H. Oeschler
    • 96
  • S. Oh
    • 143
  • A. Ohlson
    • 34
    • 96
  • T. Okubo
    • 46
  • L. Olah
    • 142
  • J. Oleniacz
    • 140
  • A. C. Oliveira Da Silva
    • 123
  • M. H. Oliver
    • 143
  • J. Onderwaater
    • 100
  • C. Oppedisano
    • 113
  • R. Orava
    • 45
  • M. Oravec
    • 118
  • A. Ortiz Velasquez
    • 62
  • A. Oskarsson
    • 33
  • J. Otwinowski
    • 120
  • K. Oyama
    • 77
  • Y. Pachmayer
    • 96
  • V. Pacik
    • 84
  • D. Pagano
    • 137
  • P. Pagano
    • 29
  • G. Paić
    • 62
  • P. Palni
    • 7
  • J. Pan
    • 141
  • A. K. Pandey
    • 47
  • S. Panebianco
    • 65
  • V. Papikyan
    • 1
  • G. S. Pappalardo
    • 109
  • P. Pareek
    • 48
  • J. Park
    • 50
  • W. J. Park
    • 100
  • S. Parmar
    • 91
  • A. Passfeld
    • 61
  • S. P. Pathak
    • 126
  • V. Paticchio
    • 106
  • R. N. Patra
    • 139
  • B. Paul
    • 113
  • H. Pei
    • 7
  • T. Peitzmann
    • 53
  • X. Peng
    • 7
  • L. G. Pereira
    • 63
  • H. Pereira Da Costa
    • 65
  • D. Peresunko
    • 76
    • 83
  • E. Perez Lezama
    • 60
  • V. Peskov
    • 60
  • Y. Pestov
    • 5
  • V. Petráček
    • 38
  • V. Petrov
    • 114
  • M. Petrovici
    • 80
  • C. Petta
    • 27
  • R. P. Pezzi
    • 63
  • S. Piano
    • 112
  • M. Pikna
    • 37
  • P. Pillot
    • 116
  • L. O. D. L. Pimentel
    • 84
  • O. Pinazza
    • 34
    • 107
  • L. Pinsky
    • 126
  • D. B. Piyarathna
    • 126
  • M. Płoskoń
    • 75
  • M. Planinic
    • 133
  • J. Pluta
    • 140
  • S. Pochybova
    • 142
  • P. L. M. Podesta-Lerma
    • 122
  • M. G. Poghosyan
    • 88
  • B. Polichtchouk
    • 114
  • N. Poljak
    • 133
  • W. Poonsawat
    • 117
  • A. Pop
    • 80
  • H. Poppenborg
    • 61
  • S. Porteboeuf-Houssais
    • 71
  • J. Porter
    • 75
  • J. Pospisil
    • 87
  • V. Pozdniakov
    • 67
  • S. K. Prasad
    • 4
  • R. Preghenella
    • 34
    • 107
  • F. Prino
    • 113
  • C. A. Pruneau
    • 141
  • I. Pshenichnov
    • 52
  • M. Puccio
    • 25
  • G. Puddu
    • 23
  • P. Pujahari
    • 141
  • V. Punin
    • 102
  • J. Putschke
    • 141
  • H. Qvigstad
    • 20
  • A. Rachevski
    • 112
  • S. Raha
    • 4
  • S. Rajput
    • 93
  • J. Rak
    • 127
  • A. Rakotozafindrabe
    • 65
  • L. Ramello
    • 31
  • F. Rami
    • 135
  • D. B. Rana
    • 126
  • R. Raniwala
    • 94
  • S. Raniwala
    • 94
  • S. S. Räsänen
    • 45
  • B. T. Rascanu
    • 60
  • D. Rathee
    • 91
  • V. Ratza
    • 44
  • I. Ravasenga
    • 30
  • K. F. Read
    • 88
    • 129
  • K. Redlich
    • 79
  • A. Rehman
    • 21
  • P. Reichelt
    • 60
  • F. Reidt
    • 34
  • X. Ren
    • 7
  • R. Renfordt
    • 60
  • A. R. Reolon
    • 73
  • A. Reshetin
    • 52
  • K. Reygers
    • 96
  • V. Riabov
    • 89
  • R. A. Ricci
    • 74
  • T. Richert
    • 33
    • 53
  • M. Richter
    • 20
  • P. Riedler
    • 34
  • W. Riegler
    • 34
  • F. Riggi
    • 27
  • C. Ristea
    • 58
  • M. Rodríguez Cahuantzi
    • 2
  • K. Røed
    • 20
  • E. Rogochaya
    • 67
  • D. Rohr
    • 41
  • D. Röhrich
    • 21
  • P. S. Rokita
    • 140
  • F. Ronchetti
    • 34
    • 73
  • L. Ronflette
    • 116
  • P. Rosnet
    • 71
  • A. Rossi
    • 28
  • A. Rotondi
    • 136
  • F. Roukoutakis
    • 78
  • A. Roy
    • 48
  • C. Roy
    • 135
  • P. Roy
    • 103
  • A. J. Rubio Montero
    • 10
  • O. V. Rueda
    • 62
  • R. Rui
    • 24
  • R. Russo
    • 25
  • A. Rustamov
    • 82
  • E. Ryabinkin
    • 83
  • Y. Ryabov
    • 89
  • A. Rybicki
    • 120
  • S. Saarinen
    • 45
  • S. Sadhu
    • 139
  • S. Sadovsky
    • 114
  • K. Šafařík
    • 34
  • S. K. Saha
    • 139
  • B. Sahlmuller
    • 60
  • B. Sahoo
    • 47
  • P. Sahoo
    • 48
  • R. Sahoo
    • 48
  • S. Sahoo
    • 57
  • P. K. Sahu
    • 57
  • J. Saini
    • 139
  • S. Sakai
    • 73
    • 132
  • M. A. Saleh
    • 141
  • J. Salzwedel
    • 18
  • S. Sambyal
    • 93
  • V. Samsonov
    • 76
    • 89
  • A. Sandoval
    • 64
  • D. Sarkar
    • 139
  • N. Sarkar
    • 139
  • P. Sarma
    • 43
  • M. H. P. Sas
    • 53
  • E. Scapparone
    • 107
  • F. Scarlassara
    • 28
  • R. P. Scharenberg
    • 98
  • H. S. Scheid
    • 60
  • C. Schiaua
    • 80
  • R. Schicker
    • 96
  • C. Schmidt
    • 100
  • H. R. Schmidt
    • 95
  • M. O. Schmidt
    • 96
  • M. Schmidt
    • 95
  • S. Schuchmann
    • 60
  • J. Schukraft
    • 34
  • Y. Schutz
    • 34
    • 116
    • 135
  • K. Schwarz
    • 100
  • K. Schweda
    • 100
  • G. Scioli
    • 26
  • E. Scomparin
    • 113
  • R. Scott
    • 129
  • M. Šefčík
    • 39
  • J. E. Seger
    • 90
  • Y. Sekiguchi
    • 131
  • D. Sekihata
    • 46
  • I. Selyuzhenkov
    • 100
  • K. Senosi
    • 66
  • S. Senyukov
    • 3
    • 34
    • 135
  • E. Serradilla
    • 10
    • 64
  • P. Sett
    • 47
  • A. Sevcenco
    • 58
  • A. Shabanov
    • 52
  • A. Shabetai
    • 116
  • O. Shadura
    • 3
  • R. Shahoyan
    • 34
  • A. Shangaraev
    • 114
  • A. Sharma
    • 91
  • A. Sharma
    • 93
  • M. Sharma
    • 93
  • M. Sharma
    • 93
  • N. Sharma
    • 91
    • 129
  • A. I. Sheikh
    • 139
  • K. Shigaki
    • 46
  • Q. Shou
    • 7
  • K. Shtejer
    • 9
    • 25
  • Y. Sibiriak
    • 83
  • S. Siddhanta
    • 108
  • K. M. Sielewicz
    • 34
  • T. Siemiarczuk
    • 79
  • D. Silvermyr
    • 33
  • C. Silvestre
    • 72
  • G. Simatovic
    • 133
  • G. Simonetti
    • 34
  • R. Singaraju
    • 139
  • R. Singh
    • 81
  • V. Singhal
    • 139
  • T. Sinha
    • 103
  • B. Sitar
    • 37
  • M. Sitta
    • 31
  • T. B. Skaali
    • 20
  • M. Slupecki
    • 127
  • N. Smirnov
    • 143
  • R. J. M. Snellings
    • 53
  • T. W. Snellman
    • 127
  • J. Song
    • 99
  • M. Song
    • 144
  • F. Soramel
    • 28
  • S. Sorensen
    • 129
  • F. Sozzi
    • 100
  • E. Spiriti
    • 73
  • I. Sputowska
    • 120
  • B. K. Srivastava
    • 98
  • J. Stachel
    • 96
  • I. Stan
    • 58
  • P. Stankus
    • 88
  • E. Stenlund
    • 33
  • J. H. Stiller
    • 96
  • D. Stocco
    • 116
  • P. Strmen
    • 37
  • A. A. P. Suaide
    • 123
  • T. Sugitate
    • 46
  • C. Suire
    • 51
  • M. Suleymanov
    • 15
  • M. Suljic
    • 24
  • R. Sultanov
    • 54
  • M. Šumbera
    • 87
  • S. Sumowidagdo
    • 49
  • K. Suzuki
    • 115
  • S. Swain
    • 57
  • A. Szabo
    • 37
  • I. Szarka
    • 37
  • A. Szczepankiewicz
    • 140
  • M. Szymanski
    • 140
  • U. Tabassam
    • 15
  • J. Takahashi
    • 124
  • G. J. Tambave
    • 21
  • N. Tanaka
    • 132
  • M. Tarhini
    • 51
  • M. Tariq
    • 17
  • M. G. Tarzila
    • 80
  • A. Tauro
    • 34
  • G. Tejeda Muñoz
    • 2
  • A. Telesca
    • 34
  • K. Terasaki
    • 131
  • C. Terrevoli
    • 28
  • B. Teyssier
    • 134
  • D. Thakur
    • 48
  • S. Thakur
    • 139
  • D. Thomas
    • 121
  • R. Tieulent
    • 134
  • A. Tikhonov
    • 52
  • A. R. Timmins
    • 126
  • A. Toia
    • 60
  • S. Tripathy
    • 48
  • S. Trogolo
    • 25
  • G. Trombetta
    • 32
  • V. Trubnikov
    • 3
  • W. H. Trzaska
    • 127
  • B. A. Trzeciak
    • 53
  • T. Tsuji
    • 131
  • A. Tumkin
    • 102
  • R. Turrisi
    • 110
  • T. S. Tveter
    • 20
  • K. Ullaland
    • 21
  • E. N. Umaka
    • 126
  • A. Uras
    • 134
  • G. L. Usai
    • 23
  • A. Utrobicic
    • 133
  • M. Vala
    • 55
    • 118
  • J. Van Der Maarel
    • 53
  • J. W. Van Hoorne
    • 34
  • M. van Leeuwen
    • 53
  • T. Vanat
    • 87
  • P. Vande Vyvre
    • 34
  • D. Varga
    • 142
  • A. Vargas
    • 2
  • M. Vargyas
    • 127
  • R. Varma
    • 47
  • M. Vasileiou
    • 78
  • A. Vasiliev
    • 83
  • A. Vauthier
    • 72
  • O. Vázquez Doce
    • 35
    • 97
  • V. Vechernin
    • 138
  • A. M. Veen
    • 53
  • A. Velure
    • 21
  • E. Vercellin
    • 25
  • S. Vergara Limón
    • 2
  • R. Vernet
    • 8
  • R. Vértesi
    • 142
  • L. Vickovic
    • 119
  • S. Vigolo
    • 53
  • J. Viinikainen
    • 127
  • Z. Vilakazi
    • 130
  • O. Villalobos Baillie
    • 104
  • A. Villatoro Tello
    • 2
  • A. Vinogradov
    • 83
  • L. Vinogradov
    • 138
  • T. Virgili
    • 29
  • V. Vislavicius
    • 33
  • A. Vodopyanov
    • 67
  • M. A. Völkl
    • 96
  • K. Voloshin
    • 54
  • S. A. Voloshin
    • 141
  • G. Volpe
    • 32
  • B. von Haller
    • 34
  • I. Vorobyev
    • 35
    • 97
  • D. Voscek
    • 118
  • D. Vranic
    • 34
    • 100
  • J. Vrláková
    • 39
  • B. Wagner
    • 21
  • J. Wagner
    • 100
  • H. Wang
    • 53
  • M. Wang
    • 7
  • D. Watanabe
    • 132
  • Y. Watanabe
    • 131
  • M. Weber
    • 115
  • S. G. Weber
    • 100
  • D. F. Weiser
    • 96
  • J. P. Wessels
    • 61
  • U. Westerhoff
    • 61
  • A. M. Whitehead
    • 92
  • J. Wiechula
    • 60
  • J. Wikne
    • 20
  • G. Wilk
    • 79
  • J. Wilkinson
    • 96
  • G. A. Willems
    • 61
  • M. C. S. Williams
    • 107
  • B. Windelband
    • 96
  • W. E. Witt
    • 129
  • S. Yalcin
    • 70
  • P. Yang
    • 7
  • S. Yano
    • 46
  • Z. Yin
    • 7
  • H. Yokoyama
    • 72
    • 132
  • I.-K. Yoo
    • 34
    • 99
  • J. H. Yoon
    • 50
  • V. Yurchenko
    • 3
  • V. Zaccolo
    • 84
    • 113
  • A. Zaman
    • 15
  • C. Zampolli
    • 34
  • H. J. C. Zanoli
    • 123
  • N. Zardoshti
    • 104
  • A. Zarochentsev
    • 138
  • P. Závada
    • 56
  • N. Zaviyalov
    • 102
  • H. Zbroszczyk
    • 140
  • M. Zhalov
    • 89
  • H. Zhang
    • 7
    • 21
  • X. Zhang
    • 7
  • Y. Zhang
    • 7
  • C. Zhang
    • 53
  • Z. Zhang
    • 7
  • C. Zhao
    • 20
  • N. Zhigareva
    • 54
  • D. Zhou
    • 7
  • Y. Zhou
    • 84
  • Z. Zhou
    • 21
  • H. Zhu
    • 7
    • 21
  • J. Zhu
    • 7
    • 116
  • X. Zhu
    • 7
  • A. Zichichi
    • 12
    • 26
  • A. Zimmermann
    • 96
  • M. B. Zimmermann
    • 34
    • 61
  • S. Zimmermann
    • 115
  • G. Zinovjev
    • 3
  • J. Zmeskal
    • 115
  • ALICE Collaboration
    • 146
  1. 1.A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) FoundationYerevanArmenia
  2. 2.Benemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  4. 4.Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS)Bose InstituteKolkataIndia
  5. 5.Budker Institute for Nuclear PhysicsNovosibirskRussia
  6. 6.California Polytechnic State UniversitySan Luis ObispoUSA
  7. 7.Central China Normal UniversityWuhanChina
  8. 8.Centre de Calcul de l’IN2P3Villeurbanne, LyonFrance
  9. 9.Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN)HavanaCuba
  10. 10.Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)MadridSpain
  11. 11.Centro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico City, MéridaMexico
  12. 12.Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi’RomeItaly
  13. 13.Chicago State UniversityChicagoUSA
  14. 14.China Institute of Atomic EnergyBeijingChina
  15. 15.COMSATS Institute of Information Technology (CIIT)IslamabadPakistan
  16. 16.Departamento de Física de Partículas and IGFAEUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  17. 17.Department of PhysicsAligarh Muslim UniversityAligarhIndia
  18. 18.Department of PhysicsOhio State UniversityColumbusUSA
  19. 19.Department of PhysicsSejong UniversitySeoulSouth Korea
  20. 20.Department of PhysicsUniversity of OsloOsloNorway
  21. 21.Department of Physics and TechnologyUniversity of BergenBergenNorway
  22. 22.Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFNRomeItaly
  23. 23.Dipartimento di Fisica dell’Università and Sezione INFNCagliariItaly
  24. 24.Dipartimento di Fisica dell’Università and Sezione INFNTriesteItaly
  25. 25.Dipartimento di Fisica dell’Università and Sezione INFNTurinItaly
  26. 26.Dipartimento di Fisica e Astronomia dell’Università and Sezione INFNBolognaItaly
  27. 27.Dipartimento di Fisica e Astronomia dell’Università and Sezione INFNCataniaItaly
  28. 28.Dipartimento di Fisica e Astronomia dell’Università and Sezione INFNPaduaItaly
  29. 29.Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFNSalernoItaly
  30. 30.Dipartimento DISAT del Politecnico and Sezione INFNTurinItaly
  31. 31.Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di TorinoAlessandriaItaly
  32. 32.Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFNBariItaly
  33. 33.Division of Experimental High Energy PhysicsUniversity of LundLundSweden
  34. 34.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  35. 35.Excellence Cluster UniverseTechnische Universität MünchenMunichGermany
  36. 36.Faculty of EngineeringBergen University CollegeBergenNorway
  37. 37.Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  38. 38.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  39. 39.Faculty of ScienceP.J. Šafárik UniversityKosiceSlovakia
  40. 40.Faculty of TechnologyBuskerud and Vestfold University CollegeTonsbergNorway
  41. 41.Frankfurt Institute for Advanced StudiesJohann Wolfgang Goethe-Universität FrankfurtFrankfurtGermany
  42. 42.Gangneung-Wonju National UniversityGangneungSouth Korea
  43. 43.Department of PhysicsGauhati UniversityGuwahatiIndia
  44. 44.Helmholtz-Institut für Strahlen- und KernphysikRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  45. 45.Helsinki Institute of Physics (HIP)HelsinkiFinland
  46. 46.Hiroshima UniversityHiroshimaJapan
  47. 47.Indian Institute of Technology Bombay (IIT)MumbaiIndia
  48. 48.Indian Institute of Technology IndoreIndoreIndia
  49. 49.Indonesian Institute of SciencesJakartaIndonesia
  50. 50.Inha UniversityIncheonSouth Korea
  51. 51.Institut de Physique Nucléaire d’Orsay (IPNO)Université Paris-Sud, CNRS-IN2P3OrsayFrance
  52. 52.Institute for Nuclear ResearchAcademy of SciencesMoscowRussia
  53. 53.Institute for Subatomic Physics of Utrecht UniversityUtrechtThe Netherlands
  54. 54.Institute for Theoretical and Experimental PhysicsMoscowRussia
  55. 55.Institute of Experimental PhysicsSlovak Academy of SciencesKosiceSlovakia
  56. 56.Institute of PhysicsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  57. 57.Institute of PhysicsBhubaneswarIndia
  58. 58.Institute of Space Science (ISS)BucharestRomania
  59. 59.Institut für InformatikJohann Wolfgang Goethe-Universität FrankfurtFrankfurtGermany
  60. 60.Institut für KernphysikJohann Wolfgang Goethe-Universität FrankfurtFrankfurtGermany
  61. 61.Institut für KernphysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  62. 62.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  63. 63.Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  64. 64.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  65. 65.IRFU, CEA, Université Paris-SaclayGif-sur-Yvette, SaclayFrance
  66. 66.iThemba LABS, National Research FoundationSomerset WestSouth Africa
  67. 67.Joint Institute for Nuclear Research (JINR)DubnaRussia
  68. 68.Konkuk UniversitySeoulSouth Korea
  69. 69.Korea Institute of Science and Technology InformationDaejeonSouth Korea
  70. 70.KTO Karatay UniversityKonyaTurkey
  71. 71.Laboratoire de Physique Corpusculaire (LPC)Clermont Université, Université Blaise Pascal, CNRS-IN2P3Clermont-FerrandFrance
  72. 72.Laboratoire de Physique Subatomique et de CosmologieUniversité Grenoble-Alpes, CNRS-IN2P3GrenobleFrance
  73. 73.Laboratori Nazionali di FrascatiINFNFrascatiItaly
  74. 74.Laboratori Nazionali di LegnaroINFNLegnaroItaly
  75. 75.Lawrence Berkeley National LaboratoryBerkeleyUSA
  76. 76.Moscow Engineering Physics InstituteMoscowRussia
  77. 77.Nagasaki Institute of Applied ScienceNagasakiJapan
  78. 78.Physics DepartmentNational and Kapodistrian University of AthensAthensGreece
  79. 79.National Centre for Nuclear StudiesWarsawPoland
  80. 80.National Institute for Physics and Nuclear EngineeringBucharestRomania
  81. 81.National Institute of Science Education and ResearchBhubaneswarIndia
  82. 82.National Nuclear Research CenterBakuAzerbaijan
  83. 83.National Research Centre Kurchatov InstituteMoscowRussia
  84. 84.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  85. 85.Nikhef, Nationaal instituut voor subatomaire fysicaAmsterdamThe Netherlands
  86. 86.Nuclear Physics GroupSTFC Daresbury LaboratoryDaresburyUK
  87. 87.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicŘež u PrahyCzech Republic
  88. 88.Oak Ridge National LaboratoryOak RidgeUSA
  89. 89.Petersburg Nuclear Physics InstituteGatchinaRussia
  90. 90.Physics DepartmentCreighton UniversityOmahaUSA
  91. 91.Physics DepartmentPanjab UniversityChandigarhIndia
  92. 92.Physics DepartmentUniversity of Cape TownCape TownSouth Africa
  93. 93.Physics DepartmentUniversity of JammuJammuIndia
  94. 94.Physics DepartmentUniversity of RajasthanJaipurIndia
  95. 95.Physikalisches InstitutEberhard Karls Universität TübingenTübingenGermany
  96. 96.Physikalisches InstitutRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  97. 97.Physik DepartmentTechnische Universität MünchenMunichGermany
  98. 98.Purdue UniversityWest LafayetteUSA
  99. 99.Pusan National UniversityPusanSouth Korea
  100. 100.Research Division and ExtreMe Matter Institute EMMIGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  101. 101.Rudjer Bošković InstituteZagrebCroatia
  102. 102.Russian Federal Nuclear Center (VNIIEF)SarovRussia
  103. 103.Saha Institute of Nuclear PhysicsKolkataIndia
  104. 104.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  105. 105.Sección Física, Departamento de CienciasPontificia Universidad Católica del PerúLimaPeru
  106. 106.Sezione INFNBariItaly
  107. 107.Sezione INFNBolognaItaly
  108. 108.Sezione INFNCagliariItaly
  109. 109.Sezione INFNCataniaItaly
  110. 110.Sezione INFNPaduaItaly
  111. 111.Sezione INFNRomeItaly
  112. 112.Sezione INFNTriesteItaly
  113. 113.Sezione INFNTurinItaly
  114. 114.SSC IHEP of NRC Kurchatov InstituteProtvinoRussia
  115. 115.Stefan Meyer Institut für Subatomare Physik (SMI)ViennaAustria
  116. 116.SUBATECH, IMT AtlantiqueUniversité de Nantes, CNRS-IN2P3NantesFrance
  117. 117.Suranaree University of TechnologyNakhon RatchasimaThailand
  118. 118.Technical University of KošiceKosiceSlovakia
  119. 119.Technical University of Split FESBSplitCroatia
  120. 120.The Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of SciencesCracowPoland
  121. 121.Physics DepartmentThe University of Texas at AustinAustinUSA
  122. 122.Universidad Autónoma de SinaloaCuliacánMexico
  123. 123.Universidade de São Paulo (USP)São PauloBrazil
  124. 124.Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  125. 125.Universidade Federal do ABCSanto AndreBrazil
  126. 126.University of HoustonHoustonUSA
  127. 127.University of JyväskyläJyväskyläFinland
  128. 128.University of LiverpoolLiverpoolUK
  129. 129.University of TennesseeKnoxvilleUSA
  130. 130.University of the WitwatersrandJohannesburgSouth Africa
  131. 131.University of TokyoTokyoJapan
  132. 132.University of TsukubaTsukubaJapan
  133. 133.University of ZagrebZagrebCroatia
  134. 134.Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-LyonVilleurbanne, LyonFrance
  135. 135.Université de Strasbourg, CNRS, IPHC UMR 7178StrasbourgFrance
  136. 136.Università degli Studi di PaviaPaviaItaly
  137. 137.Università di BresciaBresciaItaly
  138. 138.V. Fock Institute for PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  139. 139.Variable Energy Cyclotron CentreKolkataIndia
  140. 140.Warsaw University of TechnologyWarsawPoland
  141. 141.Wayne State UniversityDetroitUSA
  142. 142.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  143. 143.Yale UniversityNew HavenUSA
  144. 144.Yonsei UniversitySeoulSouth Korea
  145. 145.Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule WormsWormsGermany
  146. 146.CERNGeneva 23Switzerland

Personalised recommendations