Precision measurement and interpretation of inclusive \(W^+\), \(W^-\) and \(Z/\gamma ^*\) production cross sections with the ATLAS detector

  • M. Aaboud
  • G. Aad
  • B. Abbott
  • J. Abdallah
  • O. Abdinov
  • B. Abeloos
  • O. S. AbouZeid
  • N. L. Abraham
  • H. Abramowicz
  • H. Abreu
  • R. Abreu
  • Y. Abulaiti
  • B. S. Acharya
  • S. Adachi
  • L. Adamczyk
  • D. L. Adams
  • J. Adelman
  • S. Adomeit
  • T. Adye
  • A. A. Affolder
  • T. Agatonovic-Jovin
  • J. A. Aguilar-Saavedra
  • S. P. Ahlen
  • F. Ahmadov
  • G. Aielli
  • H. Akerstedt
  • T. P. A. Åkesson
  • A. V. Akimov
  • G. L. Alberghi
  • J. Albert
  • S. Albrand
  • M. J. Alconada Verzini
  • M. Aleksa
  • I. N. Aleksandrov
  • C. Alexa
  • G. Alexander
  • T. Alexopoulos
  • M. Alhroob
  • B. Ali
  • M. Aliev
  • G. Alimonti
  • J. Alison
  • S. P. Alkire
  • B. M. M. Allbrooke
  • B. W. Allen
  • P. P. Allport
  • A. Aloisio
  • A. Alonso
  • F. Alonso
  • C. Alpigiani
  • A. A. Alshehri
  • M. Alstaty
  • B. Alvarez Gonzalez
  • D. Álvarez Piqueras
  • M. G. Alviggi
  • B. T. Amadio
  • Y. Amaral Coutinho
  • C. Amelung
  • D. Amidei
  • S. P. Amor Dos Santos
  • A. Amorim
  • S. Amoroso
  • G. Amundsen
  • C. Anastopoulos
  • L. S. Ancu
  • N. Andari
  • T. Andeen
  • C. F. Anders
  • J. K. Anders
  • K. J. Anderson
  • A. Andreazza
  • V. Andrei
  • S. Angelidakis
  • I. Angelozzi
  • A. Angerami
  • F. Anghinolfi
  • A. V. Anisenkov
  • N. Anjos
  • A. Annovi
  • C. Antel
  • M. Antonelli
  • A. Antonov
  • D. J. Antrim
  • F. Anulli
  • M. Aoki
  • L. Aperio Bella
  • G. Arabidze
  • Y. Arai
  • J. P. Araque
  • V. Araujo Ferraz
  • A. T. H. Arce
  • F. A. Arduh
  • J.-F. Arguin
  • S. Argyropoulos
  • M. Arik
  • A. J. Armbruster
  • L. J. Armitage
  • O. Arnaez
  • H. Arnold
  • M. Arratia
  • O. Arslan
  • A. Artamonov
  • G. Artoni
  • S. Artz
  • S. Asai
  • N. Asbah
  • A. Ashkenazi
  • B. Åsman
  • L. Asquith
  • K. Assamagan
  • R. Astalos
  • M. Atkinson
  • N. B. Atlay
  • K. Augsten
  • G. Avolio
  • B. Axen
  • M. K. Ayoub
  • G. Azuelos
  • M. A. Baak
  • A. E. Baas
  • M. J. Baca
  • H. Bachacou
  • K. Bachas
  • M. Backes
  • M. Backhaus
  • P. Bagiacchi
  • P. Bagnaia
  • Y. Bai
  • J. T. Baines
  • M. Bajic
  • O. K. Baker
  • E. M. Baldin
  • P. Balek
  • T. Balestri
  • F. Balli
  • W. K. Balunas
  • E. Banas
  • Sw. Banerjee
  • A. A. E. Bannoura
  • L. Barak
  • E. L. Barberio
  • D. Barberis
  • M. Barbero
  • T. Barillari
  • M.-S. Barisits
  • T. Barklow
  • N. Barlow
  • S. L. Barnes
  • B. M. Barnett
  • R. M. Barnett
  • Z. Barnovska-Blenessy
  • A. Baroncelli
  • G. Barone
  • A. J. Barr
  • L. Barranco Navarro
  • F. Barreiro
  • J. Barreiro Guimarães da Costa
  • R. Bartoldus
  • A. E. Barton
  • P. Bartos
  • A. Basalaev
  • A. Bassalat
  • R. L. Bates
  • S. J. Batista
  • J. R. Batley
  • M. Battaglia
  • M. Bauce
  • F. Bauer
  • H. S. Bawa
  • J. B. Beacham
  • M. D. Beattie
  • T. Beau
  • P. H. Beauchemin
  • P. Bechtle
  • H. P. Beck
  • K. Becker
  • M. Becker
  • M. Beckingham
  • C. Becot
  • A. J. Beddall
  • A. Beddall
  • V. A. Bednyakov
  • M. Bedognetti
  • C. P. Bee
  • L. J. Beemster
  • T. A. Beermann
  • M. Begel
  • J. K. Behr
  • A. S. Bell
  • G. Bella
  • L. Bellagamba
  • A. Bellerive
  • M. Bellomo
  • K. Belotskiy
  • O. Beltramello
  • N. L. Belyaev
  • O. Benary
  • D. Benchekroun
  • M. Bender
  • K. Bendtz
  • N. Benekos
  • Y. Benhammou
  • E. Benhar Noccioli
  • J. Benitez
  • D. P. Benjamin
  • J. R. Bensinger
  • S. Bentvelsen
  • L. Beresford
  • M. Beretta
  • D. Berge
  • E. Bergeaas Kuutmann
  • N. Berger
  • J. Beringer
  • S. Berlendis
  • N. R. Bernard
  • C. Bernius
  • F. U. Bernlochner
  • T. Berry
  • P. Berta
  • C. Bertella
  • G. Bertoli
  • F. Bertolucci
  • I. A. Bertram
  • C. Bertsche
  • D. Bertsche
  • G. J. Besjes
  • O. Bessidskaia Bylund
  • M. Bessner
  • N. Besson
  • C. Betancourt
  • A. Bethani
  • S. Bethke
  • A. J. Bevan
  • R. M. Bianchi
  • M. Bianco
  • O. Biebel
  • D. Biedermann
  • R. Bielski
  • N. V. Biesuz
  • M. Biglietti
  • J. Bilbao De Mendizabal
  • T. R. V. Billoud
  • H. Bilokon
  • M. Bindi
  • A. Bingul
  • C. Bini
  • S. Biondi
  • T. Bisanz
  • D. M. Bjergaard
  • C. W. Black
  • J. E. Black
  • K. M. Black
  • D. Blackburn
  • R. E. Blair
  • T. Blazek
  • I. Bloch
  • C. Blocker
  • A. Blue
  • W. Blum
  • U. Blumenschein
  • S. Blunier
  • G. J. Bobbink
  • V. S. Bobrovnikov
  • S. S. Bocchetta
  • A. Bocci
  • C. Bock
  • M. Boehler
  • D. Boerner
  • J. A. Bogaerts
  • D. Bogavac
  • A. G. Bogdanchikov
  • C. Bohm
  • V. Boisvert
  • P. Bokan
  • T. Bold
  • A. S. Boldyrev
  • M. Bomben
  • M. Bona
  • M. Boonekamp
  • A. Borisov
  • G. Borissov
  • J. Bortfeldt
  • D. Bortoletto
  • V. Bortolotto
  • K. Bos
  • D. Boscherini
  • M. Bosman
  • J. D. Bossio Sola
  • J. Boudreau
  • J. Bouffard
  • E. V. Bouhova-Thacker
  • D. Boumediene
  • C. Bourdarios
  • S. K. Boutle
  • A. Boveia
  • J. Boyd
  • I. R. Boyko
  • J. Bracinik
  • A. Brandt
  • G. Brandt
  • O. Brandt
  • U. Bratzler
  • B. Brau
  • J. E. Brau
  • W. D. Breaden Madden
  • K. Brendlinger
  • A. J. Brennan
  • L. Brenner
  • R. Brenner
  • S. Bressler
  • T. M. Bristow
  • D. Britton
  • D. Britzger
  • F. M. Brochu
  • I. Brock
  • R. Brock
  • G. Brooijmans
  • T. Brooks
  • W. K. Brooks
  • J. Brosamer
  • E. Brost
  • J. H Broughton
  • P. A. Bruckman de Renstrom
  • D. Bruncko
  • R. Bruneliere
  • A. Bruni
  • G. Bruni
  • L. S. Bruni
  • B. H. Brunt
  • M. Bruschi
  • N. Bruscino
  • P. Bryant
  • L. Bryngemark
  • T. Buanes
  • Q. Buat
  • P. Buchholz
  • A. G. Buckley
  • I. A. Budagov
  • F. Buehrer
  • M. K. Bugge
  • O. Bulekov
  • D. Bullock
  • H. Burckhart
  • S. Burdin
  • C. D. Burgard
  • A. M. Burger
  • B. Burghgrave
  • K. Burka
  • S. Burke
  • I. Burmeister
  • J. T. P. Burr
  • E. Busato
  • D. Büscher
  • V. Büscher
  • P. Bussey
  • J. M. Butler
  • C. M. Buttar
  • J. M. Butterworth
  • P. Butti
  • W. Buttinger
  • A. Buzatu
  • A. R. Buzykaev
  • S. Cabrera Urbán
  • D. Caforio
  • V. M. Cairo
  • O. Cakir
  • N. Calace
  • P. Calafiura
  • A. Calandri
  • G. Calderini
  • P. Calfayan
  • G. Callea
  • L. P. Caloba
  • S. Calvente Lopez
  • D. Calvet
  • S. Calvet
  • T. P. Calvet
  • R. Camacho Toro
  • S. Camarda
  • P. Camarri
  • D. Cameron
  • R. Caminal Armadans
  • C. Camincher
  • S. Campana
  • M. Campanelli
  • A. Camplani
  • A. Campoverde
  • V. Canale
  • A. Canepa
  • M. Cano Bret
  • J. Cantero
  • T. Cao
  • M. D. M. Capeans Garrido
  • I. Caprini
  • M. Caprini
  • M. Capua
  • R. M. Carbone
  • R. Cardarelli
  • F. Cardillo
  • I. Carli
  • T. Carli
  • G. Carlino
  • B. T. Carlson
  • L. Carminati
  • R. M. D. Carney
  • S. Caron
  • E. Carquin
  • G. D. Carrillo-Montoya
  • J. R. Carter
  • J. Carvalho
  • D. Casadei
  • M. P. Casado
  • M. Casolino
  • D. W. Casper
  • E. Castaneda-Miranda
  • R. Castelijn
  • A. Castelli
  • V. Castillo Gimenez
  • N. F. Castro
  • A. Catinaccio
  • J. R. Catmore
  • A. Cattai
  • J. Caudron
  • V. Cavaliere
  • E. Cavallaro
  • D. Cavalli
  • M. Cavalli-Sforza
  • V. Cavasinni
  • F. Ceradini
  • L. Cerda Alberich
  • A. S. Cerqueira
  • A. Cerri
  • L. Cerrito
  • F. Cerutti
  • A. Cervelli
  • S. A. Cetin
  • A. Chafaq
  • D. Chakraborty
  • S. K. Chan
  • Y. L. Chan
  • P. Chang
  • J. D. Chapman
  • D. G. Charlton
  • A. Chatterjee
  • C. C. Chau
  • C. A. Chavez Barajas
  • S. Che
  • S. Cheatham
  • A. Chegwidden
  • S. Chekanov
  • S. V. Chekulaev
  • G. A. Chelkov
  • M. A. Chelstowska
  • C. Chen
  • H. Chen
  • S. Chen
  • S. Chen
  • X. Chen
  • Y. Chen
  • H. C. Cheng
  • H. J. Cheng
  • Y. Cheng
  • A. Cheplakov
  • E. Cheremushkina
  • R. Cherkaoui El Moursli
  • V. Chernyatin
  • E. Cheu
  • L. Chevalier
  • V. Chiarella
  • G. Chiarelli
  • G. Chiodini
  • A. S. Chisholm
  • A. Chitan
  • Y. H. Chiu
  • M. V. Chizhov
  • K. Choi
  • A. R. Chomont
  • S. Chouridou
  • B. K. B. Chow
  • V. Christodoulou
  • D. Chromek-Burckhart
  • J. Chudoba
  • A. J. Chuinard
  • J. J. Chwastowski
  • L. Chytka
  • A. K. Ciftci
  • D. Cinca
  • V. Cindro
  • I. A. Cioara
  • C. Ciocca
  • A. Ciocio
  • F. Cirotto
  • Z. H. Citron
  • M. Citterio
  • M. Ciubancan
  • A. Clark
  • B. L. Clark
  • M. R. Clark
  • P. J. Clark
  • R. N. Clarke
  • C. Clement
  • Y. Coadou
  • M. Cobal
  • A. Coccaro
  • J. Cochran
  • L. Colasurdo
  • B. Cole
  • A. P. Colijn
  • J. Collot
  • T. Colombo
  • P. Conde Muiño
  • E. Coniavitis
  • S. H. Connell
  • I. A. Connelly
  • V. Consorti
  • S. Constantinescu
  • G. Conti
  • F. Conventi
  • M. Cooke
  • B. D. Cooper
  • A. M. Cooper-Sarkar
  • F. Cormier
  • K. J. R. Cormier
  • T. Cornelissen
  • M. Corradi
  • F. Corriveau
  • A. Cortes-Gonzalez
  • G. Cortiana
  • G. Costa
  • M. J. Costa
  • D. Costanzo
  • G. Cottin
  • G. Cowan
  • B. E. Cox
  • K. Cranmer
  • S. J. Crawley
  • G. Cree
  • S. Crépé-Renaudin
  • F. Crescioli
  • W. A. Cribbs
  • M. Crispin Ortuzar
  • M. Cristinziani
  • V. Croft
  • G. Crosetti
  • A. Cueto
  • T. Cuhadar Donszelmann
  • J. Cummings
  • M. Curatolo
  • J. Cúth
  • H. Czirr
  • P. Czodrowski
  • G. D’amen
  • S. D’Auria
  • M. D’Onofrio
  • M. J. Da Cunha Sargedas De Sousa
  • C. Da Via
  • W. Dabrowski
  • T. Dado
  • T. Dai
  • O. Dale
  • F. Dallaire
  • C. Dallapiccola
  • M. Dam
  • J. R. Dandoy
  • N. P. Dang
  • A. C. Daniells
  • N. S. Dann
  • M. Danninger
  • M. Dano Hoffmann
  • V. Dao
  • G. Darbo
  • S. Darmora
  • J. Dassoulas
  • A. Dattagupta
  • W. Davey
  • C. David
  • T. Davidek
  • M. Davies
  • P. Davison
  • E. Dawe
  • I. Dawson
  • K. De
  • R. de Asmundis
  • A. De Benedetti
  • S. De Castro
  • S. De Cecco
  • N. De Groot
  • P. de Jong
  • H. De la Torre
  • F. De Lorenzi
  • A. De Maria
  • D. De Pedis
  • A. De Salvo
  • U. De Sanctis
  • A. De Santo
  • J. B. De Vivie De Regie
  • W. J. Dearnaley
  • R. Debbe
  • C. Debenedetti
  • D. V. Dedovich
  • N. Dehghanian
  • I. Deigaard
  • M. Del Gaudio
  • J. Del Peso
  • T. Del Prete
  • D. Delgove
  • F. Deliot
  • C. M. Delitzsch
  • A. Dell’Acqua
  • L. Dell’Asta
  • M. Dell’Orso
  • M. Della Pietra
  • D. della Volpe
  • M. Delmastro
  • P. A. Delsart
  • D. A. DeMarco
  • S. Demers
  • M. Demichev
  • A. Demilly
  • S. P. Denisov
  • D. Denysiuk
  • D. Derendarz
  • J. E. Derkaoui
  • F. Derue
  • P. Dervan
  • K. Desch
  • C. Deterre
  • K. Dette
  • P. O. Deviveiros
  • A. Dewhurst
  • S. Dhaliwal
  • A. Di Ciaccio
  • L. Di Ciaccio
  • W. K. Di Clemente
  • C. Di Donato
  • A. Di Girolamo
  • B. Di Girolamo
  • B. Di Micco
  • R. Di Nardo
  • K. F. Di Petrillo
  • A. Di Simone
  • R. Di Sipio
  • D. Di Valentino
  • C. Diaconu
  • M. Diamond
  • F. A. Dias
  • M. A. Diaz
  • E. B. Diehl
  • J. Dietrich
  • S. Díez Cornell
  • A. Dimitrievska
  • J. Dingfelder
  • P. Dita
  • S. Dita
  • F. Dittus
  • F. Djama
  • T. Djobava
  • J. I. Djuvsland
  • M. A. B. do Vale
  • D. Dobos
  • M. Dobre
  • C. Doglioni
  • J. Dolejsi
  • Z. Dolezal
  • M. Donadelli
  • S. Donati
  • P. Dondero
  • J. Donini
  • J. Dopke
  • A. Doria
  • M. T. Dova
  • A. T. Doyle
  • E. Drechsler
  • M. Dris
  • Y. Du
  • J. Duarte-Campderros
  • E. Duchovni
  • G. Duckeck
  • O. A. Ducu
  • D. Duda
  • A. Dudarev
  • A. Chr. Dudder
  • E. M. Duffield
  • L. Duflot
  • M. Dührssen
  • M. Dumancic
  • A. K. Duncan
  • M. Dunford
  • H. Duran Yildiz
  • M. Düren
  • A. Durglishvili
  • D. Duschinger
  • B. Dutta
  • M. Dyndal
  • C. Eckardt
  • K. M. Ecker
  • R. C. Edgar
  • N. C. Edwards
  • T. Eifert
  • G. Eigen
  • K. Einsweiler
  • T. Ekelof
  • M. El Kacimi
  • V. Ellajosyula
  • M. Ellert
  • S. Elles
  • F. Ellinghaus
  • A. A. Elliot
  • N. Ellis
  • J. Elmsheuser
  • M. Elsing
  • D. Emeliyanov
  • Y. Enari
  • O. C. Endner
  • J. S. Ennis
  • J. Erdmann
  • A. Ereditato
  • G. Ernis
  • J. Ernst
  • M. Ernst
  • S. Errede
  • E. Ertel
  • M. Escalier
  • H. Esch
  • C. Escobar
  • B. Esposito
  • A. I. Etienvre
  • E. Etzion
  • H. Evans
  • A. Ezhilov
  • M. Ezzi
  • F. Fabbri
  • L. Fabbri
  • G. Facini
  • R. M. Fakhrutdinov
  • S. Falciano
  • R. J. Falla
  • J. Faltova
  • Y. Fang
  • M. Fanti
  • A. Farbin
  • A. Farilla
  • C. Farina
  • E. M. Farina
  • T. Farooque
  • S. Farrell
  • S. M. Farrington
  • P. Farthouat
  • F. Fassi
  • P. Fassnacht
  • D. Fassouliotis
  • M. Faucci Giannelli
  • A. Favareto
  • W. J. Fawcett
  • L. Fayard
  • O. L. Fedin
  • W. Fedorko
  • S. Feigl
  • L. Feligioni
  • C. Feng
  • E. J. Feng
  • H. Feng
  • A. B. Fenyuk
  • L. Feremenga
  • P. Fernandez Martinez
  • S. Fernandez Perez
  • J. Ferrando
  • A. Ferrari
  • P. Ferrari
  • R. Ferrari
  • D. E. Ferreira de Lima
  • A. Ferrer
  • D. Ferrere
  • C. Ferretti
  • F. Fiedler
  • A. Filipčič
  • M. Filipuzzi
  • F. Filthaut
  • M. Fincke-Keeler
  • K. D. Finelli
  • M. C. N. Fiolhais
  • L. Fiorini
  • A. Fischer
  • C. Fischer
  • J. Fischer
  • W. C. Fisher
  • N. Flaschel
  • I. Fleck
  • P. Fleischmann
  • G. T. Fletcher
  • R. R. M. Fletcher
  • T. Flick
  • B. M. Flierl
  • L. R. Flores Castillo
  • M. J. Flowerdew
  • G. T. Forcolin
  • A. Formica
  • A. Forti
  • A. G. Foster
  • D. Fournier
  • H. Fox
  • S. Fracchia
  • P. Francavilla
  • M. Franchini
  • D. Francis
  • L. Franconi
  • M. Franklin
  • M. Frate
  • M. Fraternali
  • D. Freeborn
  • S. M. Fressard-Batraneanu
  • F. Friedrich
  • D. Froidevaux
  • J. A. Frost
  • C. Fukunaga
  • E. Fullana Torregrosa
  • T. Fusayasu
  • J. Fuster
  • C. Gabaldon
  • O. Gabizon
  • A. Gabrielli
  • A. Gabrielli
  • G. P. Gach
  • S. Gadatsch
  • G. Gagliardi
  • L. G. Gagnon
  • P. Gagnon
  • C. Galea
  • B. Galhardo
  • E. J. Gallas
  • B. J. Gallop
  • P. Gallus
  • G. Galster
  • K. K. Gan
  • S. Ganguly
  • J. Gao
  • Y. Gao
  • Y. S. Gao
  • F. M. Garay Walls
  • C. García
  • J. E. García Navarro
  • M. Garcia-Sciveres
  • R. W. Gardner
  • N. Garelli
  • V. Garonne
  • A. Gascon Bravo
  • K. Gasnikova
  • C. Gatti
  • A. Gaudiello
  • G. Gaudio
  • L. Gauthier
  • I. L. Gavrilenko
  • C. Gay
  • G. Gaycken
  • E. N. Gazis
  • Z. Gecse
  • C. N. P. Gee
  • Ch. Geich-Gimbel
  • M. Geisen
  • M. P. Geisler
  • K. Gellerstedt
  • C. Gemme
  • M. H. Genest
  • C. Geng
  • S. Gentile
  • C. Gentsos
  • S. George
  • D. Gerbaudo
  • A. Gershon
  • S. Ghasemi
  • M. Ghneimat
  • B. Giacobbe
  • S. Giagu
  • P. Giannetti
  • S. M. Gibson
  • M. Gignac
  • M. Gilchriese
  • T. P. S. Gillam
  • D. Gillberg
  • G. Gilles
  • D. M. Gingrich
  • N. Giokaris
  • M. P. Giordani
  • F. M. Giorgi
  • P. F. Giraud
  • P. Giromini
  • D. Giugni
  • F. Giuli
  • C. Giuliani
  • M. Giulini
  • B. K. Gjelsten
  • S. Gkaitatzis
  • I. Gkialas
  • E. L. Gkougkousis
  • L. K. Gladilin
  • C. Glasman
  • J. Glatzer
  • P. C. F. Glaysher
  • A. Glazov
  • M. Goblirsch-Kolb
  • J. Godlewski
  • S. Goldfarb
  • T. Golling
  • D. Golubkov
  • A. Gomes
  • R. Gonçalo
  • R. Goncalves Gama
  • J. Goncalves Pinto Firmino Da Costa
  • G. Gonella
  • L. Gonella
  • A. Gongadze
  • S. González de la Hoz
  • S. Gonzalez-Sevilla
  • L. Goossens
  • P. A. Gorbounov
  • H. A. Gordon
  • I. Gorelov
  • B. Gorini
  • E. Gorini
  • A. Gorišek
  • A. T. Goshaw
  • C. Gössling
  • M. I. Gostkin
  • C. R. Goudet
  • D. Goujdami
  • A. G. Goussiou
  • N. Govender
  • E. Gozani
  • L. Graber
  • I. Grabowska-Bold
  • P. O. J. Gradin
  • P. Grafström
  • J. Gramling
  • E. Gramstad
  • S. Grancagnolo
  • V. Gratchev
  • P. M. Gravila
  • H. M. Gray
  • E. Graziani
  • Z. D. Greenwood
  • C. Grefe
  • K. Gregersen
  • I. M. Gregor
  • P. Grenier
  • K. Grevtsov
  • J. Griffiths
  • A. A. Grillo
  • K. Grimm
  • S. Grinstein
  • Ph. Gris
  • J.-F. Grivaz
  • S. Groh
  • E. Gross
  • J. Grosse-Knetter
  • G. C. Grossi
  • Z. J. Grout
  • L. Guan
  • W. Guan
  • J. Guenther
  • F. Guescini
  • D. Guest
  • O. Gueta
  • B. Gui
  • E. Guido
  • T. Guillemin
  • S. Guindon
  • U. Gul
  • C. Gumpert
  • J. Guo
  • W. Guo
  • Y. Guo
  • R. Gupta
  • S. Gupta
  • G. Gustavino
  • P. Gutierrez
  • N. G. Gutierrez Ortiz
  • C. Gutschow
  • C. Guyot
  • C. Gwenlan
  • C. B. Gwilliam
  • A. Haas
  • C. Haber
  • H. K. Hadavand
  • N. Haddad
  • A. Hadef
  • S. Hageböck
  • M. Hagihara
  • H. Hakobyan
  • M. Haleem
  • J. Haley
  • G. Halladjian
  • G. D. Hallewell
  • K. Hamacher
  • P. Hamal
  • K. Hamano
  • A. Hamilton
  • G. N. Hamity
  • P. G. Hamnett
  • L. Han
  • S. Han
  • K. Hanagaki
  • K. Hanawa
  • M. Hance
  • B. Haney
  • P. Hanke
  • R. Hanna
  • J. B. Hansen
  • J. D. Hansen
  • M. C. Hansen
  • P. H. Hansen
  • K. Hara
  • A. S. Hard
  • T. Harenberg
  • F. Hariri
  • S. Harkusha
  • R. D. Harrington
  • P. F. Harrison
  • F. Hartjes
  • N. M. Hartmann
  • M. Hasegawa
  • Y. Hasegawa
  • A. Hasib
  • S. Hassani
  • S. Haug
  • R. Hauser
  • L. Hauswald
  • M. Havranek
  • C. M. Hawkes
  • R. J. Hawkings
  • D. Hayakawa
  • D. Hayden
  • C. P. Hays
  • J. M. Hays
  • H. S. Hayward
  • S. J. Haywood
  • S. J. Head
  • T. Heck
  • V. Hedberg
  • L. Heelan
  • S. Heim
  • T. Heim
  • B. Heinemann
  • J. J. Heinrich
  • L. Heinrich
  • C. Heinz
  • J. Hejbal
  • L. Helary
  • S. Hellman
  • C. Helsens
  • J. Henderson
  • R. C. W. Henderson
  • Y. Heng
  • S. Henkelmann
  • A. M. Henriques Correia
  • S. Henrot-Versille
  • G. H. Herbert
  • H. Herde
  • V. Herget
  • Y. Hernández Jiménez
  • G. Herten
  • R. Hertenberger
  • L. Hervas
  • G. G. Hesketh
  • N. P. Hessey
  • J. W. Hetherly
  • E. Higón-Rodriguez
  • E. Hill
  • J. C. Hill
  • K. H. Hiller
  • S. J. Hillier
  • I. Hinchliffe
  • E. Hines
  • M. Hirose
  • D. Hirschbuehl
  • O. Hladik
  • X. Hoad
  • J. Hobbs
  • N. Hod
  • M. C. Hodgkinson
  • P. Hodgson
  • A. Hoecker
  • M. R. Hoeferkamp
  • F. Hoenig
  • D. Hohn
  • T. R. Holmes
  • M. Homann
  • S. Honda
  • T. Honda
  • T. M. Hong
  • B. H. Hooberman
  • W. H. Hopkins
  • Y. Horii
  • A. J. Horton
  • J.-Y. Hostachy
  • S. Hou
  • A. Hoummada
  • J. Howarth
  • J. Hoya
  • M. Hrabovsky
  • I. Hristova
  • J. Hrivnac
  • T. Hryn’ova
  • A. Hrynevich
  • P. J. Hsu
  • S.-C. Hsu
  • Q. Hu
  • S. Hu
  • Y. Huang
  • Z. Hubacek
  • F. Hubaut
  • F. Huegging
  • T. B. Huffman
  • E. W. Hughes
  • G. Hughes
  • M. Huhtinen
  • P. Huo
  • N. Huseynov
  • J. Huston
  • J. Huth
  • G. Iacobucci
  • G. Iakovidis
  • I. Ibragimov
  • L. Iconomidou-Fayard
  • E. Ideal
  • Z. Idrissi
  • P. Iengo
  • O. Igonkina
  • T. Iizawa
  • Y. Ikegami
  • M. Ikeno
  • Y. Ilchenko
  • D. Iliadis
  • N. Ilic
  • G. Introzzi
  • P. Ioannou
  • M. Iodice
  • K. Iordanidou
  • V. Ippolito
  • N. Ishijima
  • M. Ishino
  • M. Ishitsuka
  • C. Issever
  • S. Istin
  • F. Ito
  • J. M. Iturbe Ponce
  • R. Iuppa
  • H. Iwasaki
  • J. M. Izen
  • V. Izzo
  • S. Jabbar
  • B. Jackson
  • P. Jackson
  • V. Jain
  • K. B. Jakobi
  • K. Jakobs
  • S. Jakobsen
  • T. Jakoubek
  • D. O. Jamin
  • D. K. Jana
  • R. Jansky
  • J. Janssen
  • M. Janus
  • P. A. Janus
  • G. Jarlskog
  • N. Javadov
  • T. Javůrek
  • M. Javurkova
  • F. Jeanneau
  • L. Jeanty
  • J. Jejelava
  • G.-Y. Jeng
  • P. Jenni
  • C. Jeske
  • S. Jézéquel
  • H. Ji
  • J. Jia
  • H. Jiang
  • Y. Jiang
  • Z. Jiang
  • S. Jiggins
  • J. Jimenez Pena
  • S. Jin
  • A. Jinaru
  • O. Jinnouchi
  • H. Jivan
  • P. Johansson
  • K. A. Johns
  • C. A. Johnson
  • W. J. Johnson
  • K. Jon-And
  • G. Jones
  • R. W. L. Jones
  • S. Jones
  • T. J. Jones
  • J. Jongmanns
  • P. M. Jorge
  • J. Jovicevic
  • X. Ju
  • A. Juste Rozas
  • M. K. Köhler
  • A. Kaczmarska
  • M. Kado
  • H. Kagan
  • M. Kagan
  • S. J. Kahn
  • T. Kaji
  • E. Kajomovitz
  • C. W. Kalderon
  • A. Kaluza
  • S. Kama
  • A. Kamenshchikov
  • N. Kanaya
  • S. Kaneti
  • L. Kanjir
  • V. A. Kantserov
  • J. Kanzaki
  • B. Kaplan
  • L. S. Kaplan
  • A. Kapliy
  • D. Kar
  • K. Karakostas
  • A. Karamaoun
  • N. Karastathis
  • M. J. Kareem
  • E. Karentzos
  • M. Karnevskiy
  • S. N. Karpov
  • Z. M. Karpova
  • K. Karthik
  • V. Kartvelishvili
  • A. N. Karyukhin
  • K. Kasahara
  • L. Kashif
  • R. D. Kass
  • A. Kastanas
  • Y. Kataoka
  • C. Kato
  • A. Katre
  • J. Katzy
  • K. Kawade
  • K. Kawagoe
  • T. Kawamoto
  • G. Kawamura
  • V. F. Kazanin
  • R. Keeler
  • R. Kehoe
  • J. S. Keller
  • J. J. Kempster
  • H. Keoshkerian
  • O. Kepka
  • B. P. Kerševan
  • S. Kersten
  • R. A. Keyes
  • M. Khader
  • F. Khalil-zada
  • A. Khanov
  • A. G. Kharlamov
  • T. Kharlamova
  • T. J. Khoo
  • V. Khovanskiy
  • E. Khramov
  • J. Khubua
  • S. Kido
  • C. R. Kilby
  • H. Y. Kim
  • S. H. Kim
  • Y. K. Kim
  • N. Kimura
  • O. M. Kind
  • B. T. King
  • M. King
  • D. Kirchmeier
  • J. Kirk
  • A. E. Kiryunin
  • T. Kishimoto
  • D. Kisielewska
  • F. Kiss
  • K. Kiuchi
  • O. Kivernyk
  • E. Kladiva
  • T. Klapdor-kleingrothaus
  • M. H. Klein
  • M. Klein
  • U. Klein
  • K. Kleinknecht
  • P. Klimek
  • A. Klimentov
  • R. Klingenberg
  • T. Klioutchnikova
  • E.-E. Kluge
  • P. Kluit
  • S. Kluth
  • J. Knapik
  • E. Kneringer
  • E. B. F. G. Knoops
  • A. Knue
  • A. Kobayashi
  • D. Kobayashi
  • T. Kobayashi
  • M. Kobel
  • M. Kocian
  • P. Kodys
  • T. Koffas
  • E. Koffeman
  • N. M. Köhler
  • T. Koi
  • H. Kolanoski
  • M. Kolb
  • I. Koletsou
  • A. A. Komar
  • Y. Komori
  • T. Kondo
  • N. Kondrashova
  • K. Köneke
  • A. C. König
  • T. Kono
  • R. Konoplich
  • N. Konstantinidis
  • R. Kopeliansky
  • S. Koperny
  • A. K. Kopp
  • K. Korcyl
  • K. Kordas
  • A. Korn
  • A. A. Korol
  • I. Korolkov
  • E. V. Korolkova
  • O. Kortner
  • S. Kortner
  • T. Kosek
  • V. V. Kostyukhin
  • A. Kotwal
  • A. Koulouris
  • A. Kourkoumeli-Charalampidi
  • C. Kourkoumelis
  • V. Kouskoura
  • A. B. Kowalewska
  • R. Kowalewski
  • T. Z. Kowalski
  • C. Kozakai
  • W. Kozanecki
  • A. S. Kozhin
  • V. A. Kramarenko
  • G. Kramberger
  • D. Krasnopevtsev
  • M. W. Krasny
  • A. Krasznahorkay
  • A. Kravchenko
  • M. Kretz
  • J. Kretzschmar
  • K. Kreutzfeldt
  • P. Krieger
  • K. Krizka
  • K. Kroeninger
  • H. Kroha
  • J. Kroll
  • J. Kroseberg
  • J. Krstic
  • U. Kruchonak
  • H. Krüger
  • N. Krumnack
  • M. C. Kruse
  • M. Kruskal
  • T. Kubota
  • H. Kucuk
  • S. Kuday
  • J. T. Kuechler
  • S. Kuehn
  • A. Kugel
  • F. Kuger
  • T. Kuhl
  • V. Kukhtin
  • R. Kukla
  • Y. Kulchitsky
  • S. Kuleshov
  • M. Kuna
  • T. Kunigo
  • A. Kupco
  • O. Kuprash
  • H. Kurashige
  • L. L. Kurchaninov
  • Y. A. Kurochkin
  • M. G. Kurth
  • V. Kus
  • E. S. Kuwertz
  • M. Kuze
  • J. Kvita
  • T. Kwan
  • D. Kyriazopoulos
  • A. La Rosa
  • J. L. La Rosa Navarro
  • L. La Rotonda
  • C. Lacasta
  • F. Lacava
  • J. Lacey
  • H. Lacker
  • D. Lacour
  • E. Ladygin
  • R. Lafaye
  • B. Laforge
  • T. Lagouri
  • S. Lai
  • S. Lammers
  • W. Lampl
  • E. Lançon
  • U. Landgraf
  • M. P. J. Landon
  • M. C. Lanfermann
  • V. S. Lang
  • J. C. Lange
  • A. J. Lankford
  • F. Lanni
  • K. Lantzsch
  • A. Lanza
  • A. Lapertosa
  • S. Laplace
  • C. Lapoire
  • J. F. Laporte
  • T. Lari
  • F. Lasagni Manghi
  • M. Lassnig
  • P. Laurelli
  • W. Lavrijsen
  • A. T. Law
  • P. Laycock
  • T. Lazovich
  • M. Lazzaroni
  • B. Le
  • O. Le Dortz
  • E. Le Guirriec
  • E. P. Le Quilleuc
  • M. LeBlanc
  • T. LeCompte
  • F. Ledroit-Guillon
  • C. A. Lee
  • S. C. Lee
  • L. Lee
  • B. Lefebvre
  • G. Lefebvre
  • M. Lefebvre
  • F. Legger
  • C. Leggett
  • A. Lehan
  • G. Lehmann Miotto
  • X. Lei
  • W. A. Leight
  • A. G. Leister
  • M. A. L. Leite
  • R. Leitner
  • D. Lellouch
  • B. Lemmer
  • K. J. C. Leney
  • T. Lenz
  • B. Lenzi
  • R. Leone
  • S. Leone
  • C. Leonidopoulos
  • S. Leontsinis
  • G. Lerner
  • C. Leroy
  • A. A. J. Lesage
  • C. G. Lester
  • M. Levchenko
  • J. Levêque
  • D. Levin
  • L. J. Levinson
  • M. Levy
  • A. Lewis
  • D. Lewis
  • M. Leyton
  • B. Li
  • C. Li
  • H. Li
  • L. Li
  • L. Li
  • Q. Li
  • S. Li
  • X. Li
  • Y. Li
  • Z. Liang
  • B. Liberti
  • A. Liblong
  • P. Lichard
  • K. Lie
  • J. Liebal
  • W. Liebig
  • A. Limosani
  • S. C. Lin
  • T. H. Lin
  • B. E. Lindquist
  • A. E. Lionti
  • E. Lipeles
  • A. Lipniacka
  • M. Lisovyi
  • T. M. Liss
  • A. Lister
  • A. M. Litke
  • B. Liu
  • D. Liu
  • H. Liu
  • H. Liu
  • J. Liu
  • J. B. Liu
  • K. Liu
  • L. Liu
  • M. Liu
  • Y. L. Liu
  • Y. Liu
  • M. Livan
  • A. Lleres
  • J. Llorente Merino
  • S. L. Lloyd
  • F. Lo Sterzo
  • E. M. Lobodzinska
  • P. Loch
  • F. K. Loebinger
  • K. M. Loew
  • A. Loginov
  • T. Lohse
  • K. Lohwasser
  • M. Lokajicek
  • B. A. Long
  • J. D. Long
  • R. E. Long
  • L. Longo
  • K. A. Looper
  • J. A. Lopez
  • D. Lopez Mateos
  • B. Lopez Paredes
  • I. Lopez Paz
  • A. Lopez Solis
  • J. Lorenz
  • N. Lorenzo Martinez
  • M. Losada
  • P. J. Lösel
  • X. Lou
  • A. Lounis
  • J. Love
  • P. A. Love
  • H. Lu
  • N. Lu
  • H. J. Lubatti
  • C. Luci
  • A. Lucotte
  • C. Luedtke
  • F. Luehring
  • W. Lukas
  • L. Luminari
  • O. Lundberg
  • B. Lund-Jensen
  • P. M. Luzi
  • D. Lynn
  • R. Lysak
  • E. Lytken
  • V. Lyubushkin
  • H. Ma
  • L. L. Ma
  • Y. Ma
  • G. Maccarrone
  • A. Macchiolo
  • C. M. Macdonald
  • B. Maček
  • J. Machado Miguens
  • D. Madaffari
  • R. Madar
  • H. J. Maddocks
  • W. F. Mader
  • A. Madsen
  • J. Maeda
  • S. Maeland
  • T. Maeno
  • A. Maevskiy
  • E. Magradze
  • J. Mahlstedt
  • C. Maiani
  • C. Maidantchik
  • A. A. Maier
  • T. Maier
  • A. Maio
  • S. Majewski
  • Y. Makida
  • N. Makovec
  • B. Malaescu
  • Pa. Malecki
  • V. P. Maleev
  • F. Malek
  • U. Mallik
  • D. Malon
  • C. Malone
  • S. Maltezos
  • S. Malyukov
  • J. Mamuzic
  • G. Mancini
  • L. Mandelli
  • I. Mandić
  • J. Maneira
  • L. Manhaes de Andrade Filho
  • J. Manjarres Ramos
  • A. Mann
  • A. Manousos
  • B. Mansoulie
  • J. D. Mansour
  • R. Mantifel
  • M. Mantoani
  • S. Manzoni
  • L. Mapelli
  • G. Marceca
  • L. March
  • G. Marchiori
  • M. Marcisovsky
  • M. Marjanovic
  • D. E. Marley
  • F. Marroquim
  • S. P. Marsden
  • Z. Marshall
  • S. Marti-Garcia
  • B. Martin
  • T. A. Martin
  • V. J. Martin
  • B. Martin dit Latour
  • M. Martinez
  • V. I. Martinez Outschoorn
  • S. Martin-Haugh
  • V. S. Martoiu
  • A. C. Martyniuk
  • A. Marzin
  • L. Masetti
  • T. Mashimo
  • R. Mashinistov
  • J. Masik
  • A. L. Maslennikov
  • I. Massa
  • L. Massa
  • P. Mastrandrea
  • A. Mastroberardino
  • T. Masubuchi
  • P. Mättig
  • J. Mattmann
  • J. Maurer
  • S. J. Maxfield
  • D. A. Maximov
  • R. Mazini
  • I. Maznas
  • S. M. Mazza
  • N. C. Mc Fadden
  • G. Mc Goldrick
  • S. P. Mc Kee
  • A. McCarn
  • R. L. McCarthy
  • T. G. McCarthy
  • L. I. McClymont
  • E. F. McDonald
  • J. A. Mcfayden
  • G. Mchedlidze
  • S. J. McMahon
  • R. A. McPherson
  • M. Medinnis
  • S. Meehan
  • S. Mehlhase
  • A. Mehta
  • K. Meier
  • C. Meineck
  • B. Meirose
  • D. Melini
  • B. R. Mellado Garcia
  • M. Melo
  • F. Meloni
  • S. B. Menary
  • L. Meng
  • X. T. Meng
  • A. Mengarelli
  • S. Menke
  • E. Meoni
  • S. Mergelmeyer
  • P. Mermod
  • L. Merola
  • C. Meroni
  • F. S. Merritt
  • A. Messina
  • J. Metcalfe
  • A. S. Mete
  • C. Meyer
  • C. Meyer
  • J.-P. Meyer
  • J. Meyer
  • H. Meyer Zu Theenhausen
  • F. Miano
  • R. P. Middleton
  • S. Miglioranzi
  • L. Mijović
  • G. Mikenberg
  • M. Mikestikova
  • M. Mikuž
  • M. Milesi
  • A. Milic
  • D. W. Miller
  • C. Mills
  • A. Milov
  • D. A. Milstead
  • A. A. Minaenko
  • Y. Minami
  • I. A. Minashvili
  • A. I. Mincer
  • B. Mindur
  • M. Mineev
  • Y. Minegishi
  • Y. Ming
  • L. M. Mir
  • K. P. Mistry
  • T. Mitani
  • J. Mitrevski
  • V. A. Mitsou
  • A. Miucci
  • P. S. Miyagawa
  • A. Mizukami
  • J. U. Mjörnmark
  • M. Mlynarikova
  • T. Moa
  • K. Mochizuki
  • P. Mogg
  • S. Mohapatra
  • S. Molander
  • R. Moles-Valls
  • R. Monden
  • M. C. Mondragon
  • K. Mönig
  • J. Monk
  • E. Monnier
  • A. Montalbano
  • J. Montejo Berlingen
  • F. Monticelli
  • S. Monzani
  • R. W. Moore
  • N. Morange
  • D. Moreno
  • M. Moreno Llácer
  • P. Morettini
  • S. Morgenstern
  • D. Mori
  • T. Mori
  • M. Morii
  • M. Morinaga
  • V. Morisbak
  • S. Moritz
  • A. K. Morley
  • G. Mornacchi
  • J. D. Morris
  • L. Morvaj
  • P. Moschovakos
  • M. Mosidze
  • H. J. Moss
  • J. Moss
  • K. Motohashi
  • R. Mount
  • E. Mountricha
  • E. J. W. Moyse
  • S. Muanza
  • R. D. Mudd
  • F. Mueller
  • J. Mueller
  • R. S. P. Mueller
  • T. Mueller
  • D. Muenstermann
  • P. Mullen
  • G. A. Mullier
  • F. J. Munoz Sanchez
  • J. A. Murillo Quijada
  • W. J. Murray
  • H. Musheghyan
  • M. Muškinja
  • A. G. Myagkov
  • M. Myska
  • B. P. Nachman
  • O. Nackenhorst
  • K. Nagai
  • R. Nagai
  • K. Nagano
  • Y. Nagasaka
  • K. Nagata
  • M. Nagel
  • E. Nagy
  • A. M. Nairz
  • Y. Nakahama
  • K. Nakamura
  • T. Nakamura
  • I. Nakano
  • R. F. Naranjo Garcia
  • R. Narayan
  • D. I. Narrias Villar
  • I. Naryshkin
  • T. Naumann
  • G. Navarro
  • R. Nayyar
  • H. A. Neal
  • P. Yu. Nechaeva
  • T. J. Neep
  • A. Negri
  • M. Negrini
  • S. Nektarijevic
  • C. Nellist
  • A. Nelson
  • S. Nemecek
  • P. Nemethy
  • A. A. Nepomuceno
  • M. Nessi
  • M. S. Neubauer
  • M. Neumann
  • R. M. Neves
  • P. Nevski
  • P. R. Newman
  • T. Nguyen Manh
  • R. B. Nickerson
  • R. Nicolaidou
  • J. Nielsen
  • V. Nikolaenko
  • I. Nikolic-Audit
  • K. Nikolopoulos
  • J. K. Nilsen
  • P. Nilsson
  • Y. Ninomiya
  • A. Nisati
  • R. Nisius
  • T. Nobe
  • M. Nomachi
  • I. Nomidis
  • T. Nooney
  • S. Norberg
  • M. Nordberg
  • N. Norjoharuddeen
  • O. Novgorodova
  • S. Nowak
  • M. Nozaki
  • L. Nozka
  • K. Ntekas
  • E. Nurse
  • F. Nuti
  • D. C. O’Neil
  • A. A. O’Rourke
  • V. O’Shea
  • F. G. Oakham
  • H. Oberlack
  • T. Obermann
  • J. Ocariz
  • A. Ochi
  • I. Ochoa
  • J. P. Ochoa-Ricoux
  • S. Oda
  • S. Odaka
  • H. Ogren
  • A. Oh
  • S. H. Oh
  • C. C. Ohm
  • H. Ohman
  • H. Oide
  • H. Okawa
  • Y. Okumura
  • T. Okuyama
  • A. Olariu
  • L. F. Oleiro Seabra
  • S. A. Olivares Pino
  • D. Oliveira Damazio
  • A. Olszewski
  • J. Olszowska
  • A. Onofre
  • K. Onogi
  • P. U. E. Onyisi
  • M. J. Oreglia
  • Y. Oren
  • D. Orestano
  • N. Orlando
  • R. S. Orr
  • B. Osculati
  • R. Ospanov
  • G. Otero y Garzon
  • H. Otono
  • M. Ouchrif
  • F. Ould-Saada
  • A. Ouraou
  • K. P. Oussoren
  • Q. Ouyang
  • M. Owen
  • R. E. Owen
  • V. E. Ozcan
  • N. Ozturk
  • K. Pachal
  • A. Pacheco Pages
  • L. Pacheco Rodriguez
  • C. Padilla Aranda
  • S. Pagan Griso
  • M. Paganini
  • F. Paige
  • P. Pais
  • K. Pajchel
  • G. Palacino
  • S. Palazzo
  • S. Palestini
  • M. Palka
  • D. Pallin
  • E. St. Panagiotopoulou
  • I. Panagoulias
  • C. E. Pandini
  • J. G. Panduro Vazquez
  • P. Pani
  • S. Panitkin
  • D. Pantea
  • L. Paolozzi
  • Th. D. Papadopoulou
  • K. Papageorgiou
  • A. Paramonov
  • D. Paredes Hernandez
  • A. J. Parker
  • M. A. Parker
  • K. A. Parker
  • F. Parodi
  • J. A. Parsons
  • U. Parzefall
  • V. R. Pascuzzi
  • E. Pasqualucci
  • S. Passaggio
  • Fr. Pastore
  • G. Pásztor
  • S. Pataraia
  • J. R. Pater
  • T. Pauly
  • J. Pearce
  • B. Pearson
  • L. E. Pedersen
  • M. Pedersen
  • S. Pedraza Lopez
  • R. Pedro
  • S. V. Peleganchuk
  • O. Penc
  • C. Peng
  • H. Peng
  • J. Penwell
  • B. S. Peralva
  • M. M. Perego
  • D. V. Perepelitsa
  • E. Perez Codina
  • L. Perini
  • H. Pernegger
  • S. Perrella
  • R. Peschke
  • V. D. Peshekhonov
  • K. Peters
  • R. F. Y. Peters
  • B. A. Petersen
  • T. C. Petersen
  • E. Petit
  • A. Petridis
  • C. Petridou
  • P. Petroff
  • E. Petrolo
  • M. Petrov
  • F. Petrucci
  • N. E. Pettersson
  • A. Peyaud
  • R. Pezoa
  • P. W. Phillips
  • G. Piacquadio
  • E. Pianori
  • A. Picazio
  • E. Piccaro
  • M. Piccinini
  • M. A. Pickering
  • R. Piegaia
  • J. E. Pilcher
  • A. D. Pilkington
  • A. W. J. Pin
  • M. Pinamonti
  • J. L. Pinfold
  • A. Pingel
  • S. Pires
  • H. Pirumov
  • M. Pitt
  • L. Plazak
  • M.-A. Pleier
  • V. Pleskot
  • E. Plotnikova
  • D. Pluth
  • R. Poettgen
  • L. Poggioli
  • D. Pohl
  • G. Polesello
  • A. Poley
  • A. Policicchio
  • R. Polifka
  • A. Polini
  • C. S. Pollard
  • V. Polychronakos
  • K. Pommès
  • L. Pontecorvo
  • B. G. Pope
  • G. A. Popeneciu
  • A. Poppleton
  • S. Pospisil
  • K. Potamianos
  • I. N. Potrap
  • C. J. Potter
  • C. T. Potter
  • G. Poulard
  • J. Poveda
  • V. Pozdnyakov
  • M. E. Pozo Astigarraga
  • P. Pralavorio
  • A. Pranko
  • S. Prell
  • D. Price
  • L. E. Price
  • M. Primavera
  • S. Prince
  • K. Prokofiev
  • F. Prokoshin
  • S. Protopopescu
  • J. Proudfoot
  • M. Przybycien
  • D. Puddu
  • M. Purohit
  • P. Puzo
  • J. Qian
  • G. Qin
  • Y. Qin
  • A. Quadt
  • W. B. Quayle
  • M. Queitsch-Maitland
  • D. Quilty
  • S. Raddum
  • V. Radeka
  • V. Radescu
  • S. K. Radhakrishnan
  • P. Radloff
  • P. Rados
  • F. Ragusa
  • G. Rahal
  • J. A. Raine
  • S. Rajagopalan
  • M. Rammensee
  • C. Rangel-Smith
  • M. G. Ratti
  • D. M. Rauch
  • F. Rauscher
  • S. Rave
  • T. Ravenscroft
  • I. Ravinovich
  • M. Raymond
  • A. L. Read
  • N. P. Readioff
  • M. Reale
  • D. M. Rebuzzi
  • A. Redelbach
  • G. Redlinger
  • R. Reece
  • R. G. Reed
  • K. Reeves
  • L. Rehnisch
  • J. Reichert
  • A. Reiss
  • C. Rembser
  • H. Ren
  • M. Rescigno
  • S. Resconi
  • E. D. Resseguie
  • O. L. Rezanova
  • P. Reznicek
  • R. Rezvani
  • R. Richter
  • S. Richter
  • E. Richter-Was
  • O. Ricken
  • M. Ridel
  • P. Rieck
  • C. J. Riegel
  • J. Rieger
  • O. Rifki
  • M. Rijssenbeek
  • A. Rimoldi
  • M. Rimoldi
  • L. Rinaldi
  • B. Ristić
  • E. Ritsch
  • I. Riu
  • F. Rizatdinova
  • E. Rizvi
  • C. Rizzi
  • R. T. Roberts
  • S. H. Robertson
  • A. Robichaud-Veronneau
  • D. Robinson
  • J. E. M. Robinson
  • A. Robson
  • C. Roda
  • Y. Rodina
  • A. Rodriguez Perez
  • D. Rodriguez Rodriguez
  • S. Roe
  • C. S. Rogan
  • O. Røhne
  • J. Roloff
  • A. Romaniouk
  • M. Romano
  • S. M. Romano Saez
  • E. Romero Adam
  • N. Rompotis
  • M. Ronzani
  • L. Roos
  • E. Ros
  • S. Rosati
  • K. Rosbach
  • P. Rose
  • N.-A. Rosien
  • V. Rossetti
  • E. Rossi
  • L. P. Rossi
  • J. H. N. Rosten
  • R. Rosten
  • M. Rotaru
  • I. Roth
  • J. Rothberg
  • D. Rousseau
  • A. Rozanov
  • Y. Rozen
  • X. Ruan
  • F. Rubbo
  • M. S. Rudolph
  • F. Rühr
  • A. Ruiz-Martinez
  • Z. Rurikova
  • N. A. Rusakovich
  • A. Ruschke
  • H. L. Russell
  • J. P. Rutherfoord
  • N. Ruthmann
  • Y. F. Ryabov
  • M. Rybar
  • G. Rybkin
  • S. Ryu
  • A. Ryzhov
  • G. F. Rzehorz
  • A. F. Saavedra
  • G. Sabato
  • S. Sacerdoti
  • H. F.-W. Sadrozinski
  • R. Sadykov
  • F. Safai Tehrani
  • P. Saha
  • M. Sahinsoy
  • M. Saimpert
  • T. Saito
  • H. Sakamoto
  • Y. Sakurai
  • G. Salamanna
  • A. Salamon
  • J. E. Salazar Loyola
  • D. Salek
  • P. H. Sales De Bruin
  • D. Salihagic
  • A. Salnikov
  • J. Salt
  • D. Salvatore
  • F. Salvatore
  • A. Salvucci
  • A. Salzburger
  • D. Sammel
  • D. Sampsonidis
  • J. Sánchez
  • V. Sanchez Martinez
  • A. Sanchez Pineda
  • H. Sandaker
  • R. L. Sandbach
  • M. Sandhoff
  • C. Sandoval
  • D. P. C. Sankey
  • M. Sannino
  • A. Sansoni
  • C. Santoni
  • R. Santonico
  • H. Santos
  • I. Santoyo Castillo
  • K. Sapp
  • A. Sapronov
  • J. G. Saraiva
  • B. Sarrazin
  • O. Sasaki
  • K. Sato
  • E. Sauvan
  • G. Savage
  • P. Savard
  • N. Savic
  • C. Sawyer
  • L. Sawyer
  • J. Saxon
  • C. Sbarra
  • A. Sbrizzi
  • T. Scanlon
  • D. A. Scannicchio
  • M. Scarcella
  • V. Scarfone
  • J. Schaarschmidt
  • P. Schacht
  • B. M. Schachtner
  • D. Schaefer
  • L. Schaefer
  • R. Schaefer
  • J. Schaeffer
  • S. Schaepe
  • S. Schaetzel
  • U. Schäfer
  • A. C. Schaffer
  • D. Schaile
  • R. D. Schamberger
  • V. Scharf
  • V. A. Schegelsky
  • D. Scheirich
  • M. Schernau
  • C. Schiavi
  • S. Schier
  • C. Schillo
  • M. Schioppa
  • S. Schlenker
  • K. R. Schmidt-Sommerfeld
  • K. Schmieden
  • C. Schmitt
  • S. Schmitt
  • S. Schmitt
  • S. Schmitz
  • B. Schneider
  • U. Schnoor
  • L. Schoeffel
  • A. Schoening
  • B. D. Schoenrock
  • E. Schopf
  • M. Schott
  • J. F. P. Schouwenberg
  • J. Schovancova
  • S. Schramm
  • M. Schreyer
  • N. Schuh
  • A. Schulte
  • M. J. Schultens
  • H.-C. Schultz-Coulon
  • H. Schulz
  • M. Schumacher
  • B. A. Schumm
  • Ph. Schune
  • A. Schwartzman
  • T. A. Schwarz
  • H. Schweiger
  • Ph. Schwemling
  • R. Schwienhorst
  • J. Schwindling
  • T. Schwindt
  • G. Sciolla
  • F. Scuri
  • F. Scutti
  • J. Searcy
  • P. Seema
  • S. C. Seidel
  • A. Seiden
  • F. Seifert
  • J. M. Seixas
  • G. Sekhniaidze
  • K. Sekhon
  • S. J. Sekula
  • N. Semprini-Cesari
  • C. Serfon
  • L. Serin
  • L. Serkin
  • M. Sessa
  • R. Seuster
  • H. Severini
  • T. Sfiligoj
  • F. Sforza
  • A. Sfyrla
  • E. Shabalina
  • N. W. Shaikh
  • L. Y. Shan
  • R. Shang
  • J. T. Shank
  • M. Shapiro
  • P. B. Shatalov
  • K. Shaw
  • S. M. Shaw
  • A. Shcherbakova
  • C. Y. Shehu
  • P. Sherwood
  • L. Shi
  • S. Shimizu
  • C. O. Shimmin
  • M. Shimojima
  • S. Shirabe
  • M. Shiyakova
  • A. Shmeleva
  • D. Shoaleh Saadi
  • M. J. Shochet
  • S. Shojaii
  • D. R. Shope
  • S. Shrestha
  • E. Shulga
  • M. A. Shupe
  • P. Sicho
  • A. M. Sickles
  • P. E. Sidebo
  • E. Sideras Haddad
  • O. Sidiropoulou
  • D. Sidorov
  • A. Sidoti
  • F. Siegert
  • Dj. Sijacki
  • J. Silva
  • S. B. Silverstein
  • V. Simak
  • Lj. Simic
  • S. Simion
  • E. Simioni
  • B. Simmons
  • D. Simon
  • M. Simon
  • P. Sinervo
  • N. B. Sinev
  • M. Sioli
  • G. Siragusa
  • I. Siral
  • S. Yu. Sivoklokov
  • J. Sjölin
  • M. B. Skinner
  • H. P. Skottowe
  • P. Skubic
  • M. Slater
  • T. Slavicek
  • M. Slawinska
  • K. Sliwa
  • R. Slovak
  • V. Smakhtin
  • B. H. Smart
  • L. Smestad
  • J. Smiesko
  • S. Yu. Smirnov
  • Y. Smirnov
  • L. N. Smirnova
  • O. Smirnova
  • J. W. Smith
  • M. N. K. Smith
  • R. W. Smith
  • M. Smizanska
  • K. Smolek
  • A. A. Snesarev
  • I. M. Snyder
  • S. Snyder
  • R. Sobie
  • F. Socher
  • A. Soffer
  • D. A. Soh
  • G. Sokhrannyi
  • C. A. Solans Sanchez
  • M. Solar
  • E. Yu. Soldatov
  • U. Soldevila
  • A. A. Solodkov
  • A. Soloshenko
  • O. V. Solovyanov
  • V. Solovyev
  • P. Sommer
  • H. Son
  • H. Y. Song
  • A. Sood
  • A. Sopczak
  • V. Sopko
  • V. Sorin
  • D. Sosa
  • C. L. Sotiropoulou
  • R. Soualah
  • A. M. Soukharev
  • D. South
  • B. C. Sowden
  • S. Spagnolo
  • M. Spalla
  • M. Spangenberg
  • F. Spanò
  • D. Sperlich
  • F. Spettel
  • R. Spighi
  • G. Spigo
  • L. A. Spiller
  • M. Spousta
  • R. D. St. Denis
  • A. Stabile
  • R. Stamen
  • S. Stamm
  • E. Stanecka
  • R. W. Stanek
  • C. Stanescu
  • M. Stanescu-Bellu
  • M. M. Stanitzki
  • S. Stapnes
  • E. A. Starchenko
  • G. H. Stark
  • J. Stark
  • S. H Stark
  • P. Staroba
  • P. Starovoitov
  • S. Stärz
  • R. Staszewski
  • P. Steinberg
  • B. Stelzer
  • H. J. Stelzer
  • O. Stelzer-Chilton
  • H. Stenzel
  • G. A. Stewart
  • J. A. Stillings
  • M. C. Stockton
  • M. Stoebe
  • G. Stoicea
  • P. Stolte
  • S. Stonjek
  • A. R. Stradling
  • A. Straessner
  • M. E. Stramaglia
  • J. Strandberg
  • S. Strandberg
  • A. Strandlie
  • M. Strauss
  • P. Strizenec
  • R. Ströhmer
  • D. M. Strom
  • R. Stroynowski
  • A. Strubig
  • S. A. Stucci
  • B. Stugu
  • N. A. Styles
  • D. Su
  • J. Su
  • S. Suchek
  • Y. Sugaya
  • M. Suk
  • V. V. Sulin
  • S. Sultansoy
  • T. Sumida
  • S. Sun
  • X. Sun
  • J. E. Sundermann
  • K. Suruliz
  • C. J. E. Suster
  • M. R. Sutton
  • S. Suzuki
  • M. Svatos
  • M. Swiatlowski
  • S. P. Swift
  • I. Sykora
  • T. Sykora
  • D. Ta
  • K. Tackmann
  • J. Taenzer
  • A. Taffard
  • R. Tafirout
  • N. Taiblum
  • H. Takai
  • R. Takashima
  • T. Takeshita
  • Y. Takubo
  • M. Talby
  • A. A. Talyshev
  • J. Tanaka
  • M. Tanaka
  • R. Tanaka
  • S. Tanaka
  • R. Tanioka
  • B. B. Tannenwald
  • S. Tapia Araya
  • S. Tapprogge
  • S. Tarem
  • G. F. Tartarelli
  • P. Tas
  • M. Tasevsky
  • T. Tashiro
  • E. Tassi
  • A. Tavares Delgado
  • Y. Tayalati
  • A. C. Taylor
  • G. N. Taylor
  • P. T. E. Taylor
  • W. Taylor
  • F. A. Teischinger
  • P. Teixeira-Dias
  • K. K. Temming
  • D. Temple
  • H. Ten Kate
  • P. K. Teng
  • J. J. Teoh
  • F. Tepel
  • S. Terada
  • K. Terashi
  • J. Terron
  • S. Terzo
  • M. Testa
  • R. J. Teuscher
  • T. Theveneaux-Pelzer
  • J. P. Thomas
  • J. Thomas-Wilsker
  • P. D. Thompson
  • A. S. Thompson
  • L. A. Thomsen
  • E. Thomson
  • M. J. Tibbetts
  • R. E. Ticse Torres
  • V. O. Tikhomirov
  • Yu. A. Tikhonov
  • S. Timoshenko
  • P. Tipton
  • S. Tisserant
  • K. Todome
  • T. Todorov
  • S. Todorova-Nova
  • J. Tojo
  • S. Tokár
  • K. Tokushuku
  • E. Tolley
  • L. Tomlinson
  • M. Tomoto
  • L. Tompkins
  • K. Toms
  • B. Tong
  • P. Tornambe
  • E. Torrence
  • H. Torres
  • E. Torró Pastor
  • J. Toth
  • F. Touchard
  • D. R. Tovey
  • T. Trefzger
  • A. Tricoli
  • I. M. Trigger
  • S. Trincaz-Duvoid
  • M. F. Tripiana
  • W. Trischuk
  • B. Trocmé
  • A. Trofymov
  • C. Troncon
  • M. Trottier-McDonald
  • M. Trovatelli
  • L. Truong
  • M. Trzebinski
  • A. Trzupek
  • J. C.-L. Tseng
  • P. V. Tsiareshka
  • G. Tsipolitis
  • N. Tsirintanis
  • S. Tsiskaridze
  • V. Tsiskaridze
  • E. G. Tskhadadze
  • K. M. Tsui
  • I. I. Tsukerman
  • V. Tsulaia
  • S. Tsuno
  • D. Tsybychev
  • Y. Tu
  • A. Tudorache
  • V. Tudorache
  • T. T. Tulbure
  • A. N. Tuna
  • S. A. Tupputi
  • S. Turchikhin
  • D. Turgeman
  • I. Turk Cakir
  • R. Turra
  • P. M. Tuts
  • G. Ucchielli
  • I. Ueda
  • M. Ughetto
  • F. Ukegawa
  • G. Unal
  • A. Undrus
  • G. Unel
  • F. C. Ungaro
  • Y. Unno
  • C. Unverdorben
  • J. Urban
  • P. Urquijo
  • P. Urrejola
  • G. Usai
  • J. Usui
  • L. Vacavant
  • V. Vacek
  • B. Vachon
  • C. Valderanis
  • E. Valdes Santurio
  • N. Valencic
  • S. Valentinetti
  • A. Valero
  • L. Valery
  • S. Valkar
  • J. A. Valls Ferrer
  • W. Van Den Wollenberg
  • P. C. Van Der Deijl
  • H. van der Graaf
  • N. van Eldik
  • P. van Gemmeren
  • J. Van Nieuwkoop
  • I. van Vulpen
  • M. C. van Woerden
  • M. Vanadia
  • W. Vandelli
  • R. Vanguri
  • A. Vaniachine
  • P. Vankov
  • G. Vardanyan
  • R. Vari
  • E. W. Varnes
  • T. Varol
  • D. Varouchas
  • A. Vartapetian
  • K. E. Varvell
  • J. G. Vasquez
  • G. A. Vasquez
  • F. Vazeille
  • T. Vazquez Schroeder
  • J. Veatch
  • V. Veeraraghavan
  • L. M. Veloce
  • F. Veloso
  • S. Veneziano
  • A. Ventura
  • M. Venturi
  • N. Venturi
  • A. Venturini
  • V. Vercesi
  • M. Verducci
  • W. Verkerke
  • J. C. Vermeulen
  • A. Vest
  • M. C. Vetterli
  • O. Viazlo
  • I. Vichou
  • T. Vickey
  • O. E. Vickey Boeriu
  • G. H. A. Viehhauser
  • S. Viel
  • L. Vigani
  • M. Villa
  • M. Villaplana Perez
  • E. Vilucchi
  • M. G. Vincter
  • V. B. Vinogradov
  • A. Vishwakarma
  • C. Vittori
  • I. Vivarelli
  • S. Vlachos
  • M. Vlasak
  • M. Vogel
  • P. Vokac
  • G. Volpi
  • M. Volpi
  • H. von der Schmitt
  • E. von Toerne
  • V. Vorobel
  • K. Vorobev
  • M. Vos
  • R. Voss
  • J. H. Vossebeld
  • N. Vranjes
  • M. Vranjes Milosavljevic
  • V. Vrba
  • M. Vreeswijk
  • R. Vuillermet
  • I. Vukotic
  • P. Wagner
  • W. Wagner
  • H. Wahlberg
  • S. Wahrmund
  • J. Wakabayashi
  • J. Walder
  • R. Walker
  • W. Walkowiak
  • V. Wallangen
  • C. Wang
  • C. Wang
  • F. Wang
  • H. Wang
  • H. Wang
  • J. Wang
  • J. Wang
  • K. Wang
  • Q. Wang
  • R. Wang
  • S. M. Wang
  • T. Wang
  • W. Wang
  • C. Wanotayaroj
  • A. Warburton
  • C. P. Ward
  • D. R. Wardrope
  • A. Washbrook
  • P. M. Watkins
  • A. T. Watson
  • M. F. Watson
  • G. Watts
  • S. Watts
  • B. M. Waugh
  • S. Webb
  • M. S. Weber
  • S. W. Weber
  • S. A. Weber
  • J. S. Webster
  • A. R. Weidberg
  • B. Weinert
  • J. Weingarten
  • C. Weiser
  • H. Weits
  • P. S. Wells
  • T. Wenaus
  • T. Wengler
  • S. Wenig
  • N. Wermes
  • M. D. Werner
  • P. Werner
  • M. Wessels
  • J. Wetter
  • K. Whalen
  • N. L. Whallon
  • A. M. Wharton
  • A. White
  • M. J. White
  • R. White
  • D. Whiteson
  • F. J. Wickens
  • W. Wiedenmann
  • M. Wielers
  • C. Wiglesworth
  • L. A. M. Wiik-Fuchs
  • A. Wildauer
  • F. Wilk
  • H. G. Wilkens
  • H. H. Williams
  • S. Williams
  • C. Willis
  • S. Willocq
  • J. A. Wilson
  • I. Wingerter-Seez
  • F. Winklmeier
  • O. J. Winston
  • B. T. Winter
  • M. Wittgen
  • M. Wobisch
  • T. M. H. Wolf
  • R. Wolff
  • M. W. Wolter
  • H. Wolters
  • S. D. Worm
  • B. K. Wosiek
  • J. Wotschack
  • M. J. Woudstra
  • K. W. Wozniak
  • M. Wu
  • M. Wu
  • S. L. Wu
  • X. Wu
  • Y. Wu
  • T. R. Wyatt
  • B. M. Wynne
  • S. Xella
  • Z. Xi
  • D. Xu
  • L. Xu
  • B. Yabsley
  • S. Yacoob
  • D. Yamaguchi
  • Y. Yamaguchi
  • A. Yamamoto
  • S. Yamamoto
  • T. Yamanaka
  • K. Yamauchi
  • Y. Yamazaki
  • Z. Yan
  • H. Yang
  • H. Yang
  • Y. Yang
  • Z. Yang
  • W.-M. Yao
  • Y. C. Yap
  • Y. Yasu
  • E. Yatsenko
  • K. H. Yau Wong
  • J. Ye
  • S. Ye
  • I. Yeletskikh
  • E. Yildirim
  • K. Yorita
  • R. Yoshida
  • K. Yoshihara
  • C. Young
  • C. J. S. Young
  • S. Youssef
  • D. R. Yu
  • J. Yu
  • J. M. Yu
  • J. Yu
  • L. Yuan
  • S. P. Y. Yuen
  • I. Yusuff
  • B. Zabinski
  • G. Zacharis
  • R. Zaidan
  • A. M. Zaitsev
  • N. Zakharchuk
  • J. Zalieckas
  • A. Zaman
  • S. Zambito
  • D. Zanzi
  • C. Zeitnitz
  • M. Zeman
  • A. Zemla
  • J. C. Zeng
  • Q. Zeng
  • O. Zenin
  • T. Ženiš
  • D. Zerwas
  • D. Zhang
  • F. Zhang
  • G. Zhang
  • H. Zhang
  • J. Zhang
  • L. Zhang
  • L. Zhang
  • M. Zhang
  • R. Zhang
  • R. Zhang
  • X. Zhang
  • Y. Zhang
  • Z. Zhang
  • X. Zhao
  • Y. Zhao
  • Z. Zhao
  • A. Zhemchugov
  • J. Zhong
  • B. Zhou
  • C. Zhou
  • L. Zhou
  • L. Zhou
  • M. Zhou
  • M. Zhou
  • N. Zhou
  • C. G. Zhu
  • H. Zhu
  • J. Zhu
  • Y. Zhu
  • X. Zhuang
  • K. Zhukov
  • A. Zibell
  • D. Zieminska
  • N. I. Zimine
  • C. Zimmermann
  • S. Zimmermann
  • Z. Zinonos
  • M. Zinser
  • M. Ziolkowski
  • L. Živković
  • G. Zobernig
  • A. Zoccoli
  • M. zur Nedden
  • L. Zwalinski
  • ATLAS Collaboration
Open Access
Regular Article - Experimental Physics

Abstract

High-precision measurements by the ATLAS Collaboration are presented of inclusive \(W^+ \rightarrow \ell ^+\nu \), \(W^- \rightarrow \ell ^-\bar{\nu }\) and \(Z/\gamma ^* \rightarrow \ell \ell \) (\(\ell =e,\mu \)) Drell–Yan production cross sections at the LHC. The data were collected in proton–proton collisions at \(\sqrt{s} = 7\,\text {TeV}\) with an integrated luminosity of \(4.6\,\mathrm {fb}^{-1}\). Differential \(W^+\) and \(W^-\) cross sections are measured in a lepton pseudorapidity range \(|\eta _{\ell }|<2.5\). Differential \(Z/\gamma ^*\) cross sections are measured as a function of the absolute dilepton rapidity, for \(|y_{\ell \ell }| < 3.6\), for three intervals of dilepton mass, \(m_{\ell \ell }\), extending from 46 to \(150\,\,\text {GeV}\). The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive \(e^{\pm }p\) scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element \(\vert V_{cs} \vert \) is also provided.

1 Introduction

The precise measurement of inclusive \(W^+\), \(W^-\) and \(Z/\gamma ^*\) production in pp scattering at the LHC constitutes a sensitive test of perturbative quantum chromodynamics (QCD). The rapidity dependence of boson production in the Drell–Yan process provides constraints on the parton distribution functions (PDFs) of the proton, as the boson rapidity is strongly correlated with the proton momentum fractions \(x_1\), \(x_2\) carried by the partons participating in the hard scattering subprocess. The weak and electromagnetic components of the neutral current (NC) process, \(Z/\gamma ^* \rightarrow \ell \ell \), combined with the weak charged current (CC) reactions, \(W^+ \rightarrow \ell ^+\nu \) and \(W^- \rightarrow \ell ^-\bar{\nu }\), probe the quark flavours of the proton in a way that complements the information from deep inelastic lepton–hadron scattering (DIS).

The previous differential \(W,\,Z\) cross-section measurement of ATLAS [1] at a centre-of-mass energy of \(\sqrt{s}=7\,\text {TeV}\) was based on a data sample taken in 2010 with an integrated luminosity of \(36\,\mathrm {pb}^{-1}\), determined with an uncertainty of 3.5%. The precision of that measurement – not including the luminosity uncertainty – reached about 2–3%. The new \(W^{\pm },~Z\) cross-section measurement presented here uses the data taken at \(\sqrt{s}=7\,\text {TeV}\) by ATLAS in 2011. This data sample has a hundred times more integrated luminosity, \(4.6\,\mathrm {fb}^{-1}\), measured with an improved precision of 1.8% [2]. A deeper understanding of detector performance and refined analysis techniques are crucial to reach a measurement precision at the sub-percent level, apart from the luminosity uncertainty.

Compared to the previous analysis [1], in this article the NC measurement range is extended to values of dilepton mass, \(m_{\ell \ell }\) , significantly below and above the Z peak, covering the range \(46< m_{\ell \ell }< 150\,\text {GeV}\). ATLAS NC data have also been presented at even lower [3] (\(12< m_{\ell \ell }< 66\,\text {GeV}\)) and higher dilepton masses [4, 5] (\(116< m_{\ell \ell }< 1500\,\text {GeV}\)). Precise NC measurements at \(\sqrt{s}=8\,\text {TeV}\) over a range of dilepton masses of \(12<m_{\ell \ell }<150\,\,\text {GeV}\) focused on boson transverse momentum distributions have been provided in Ref. [6]. Recently, first integrated cross-section results on inclusive \(W^{\pm }\) and Z production at \(\sqrt{s}=13\,\text {TeV}\) were published by ATLAS [7].

Weak boson cross-section measurements at forward rapidity were presented by LHCb [8, 9, 10, 11, 12, 13, 14, 15] in the muon and electron channels. The CMS Collaboration has measured NC cross sections as a function of boson mass and rapidity [16, 17], of boson transverse momentum and rapidity [18], as well as differential \(W^\pm \) charge asymmetries [19, 20, 21], and integrated W and Z cross sections [22, 23].

The precision of the present measurement of the \(W^\pm \) and \(Z/\gamma ^*\) cross sections exceeds that of the previous related measurements. The analysis is performed in both the electron channels, \(W^{\pm } \rightarrow e \nu \) and \(Z/\gamma ^* \rightarrow e^+e^-\), and the muon channels, \(W^{\pm } \rightarrow \mu \nu \) and \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\), in a common fiducial phase space. These measurements provide a new sensitive test of electron–muon universality in the weak interaction sector. The electron and muon data are combined, accounting for all correlations of systematic uncertainties.

Cross-section calculations of the Drell–Yan process are available at up to next-to-next-to-leading order in the strong coupling constant \(\alpha _{\text {S}} \) (NNLO QCD) and up to next-to-leading order for electroweak effects (NLO electroweak). The NNLO QCD predictions are calculated with kinematic requirements applied to match the detector acceptance using the DYNNLO [24, 25] and FEWZ [26, 27, 28] programs. The NLO electroweak corrections are an important ingredient at this level of precision and can be evaluated with FEWZ for the NC processes and with the SANC programs [29] for both NC and CC processes. The measured integrated and differential cross sections are compared to calculations using various recent PDF sets: ABM12 [30], CT14 [31], HERAPDF2.0 [32], JR14 [33], MMHT14 [34], and NNPDF3.0 [35]. A quantitative analysis within a profiling procedure [36, 37] is presented to test the compatibility of the new \(W,\, Z\) cross-section data with theoretical predictions using these PDF sets, and to illustrate the impact of the data on PDF determinations.

The previous ATLAS \(W,\,Z\) cross-section measurement [1] and its QCD interpretation [38] suggested that the light quark sea (\(u,\, d,\, s\)) is flavour symmetric, i.e. the ratio of the strange-to-anti-down quark densities, \(r_s=(s+\bar{s})/2\bar{d}\), was found to be close to unity at \(x \simeq 0.023\) within an experimental uncertainty of about 20%. This is re-examined here in a new QCD fit analysis using the present ATLAS measurement together with the final, combined NC and CC DIS cross-section data from the H1 and ZEUS experiments at the HERA collider [32]. The analysis provides a new NNLO PDF set, ATLAS-epWZ16, superseding the ATLAS-epWZ12 set [38]. It also allows the magnitude of the CKM matrix element \(\vert V_{cs} \vert \) to be determined, without assuming unitarity of the CKM matrix, with a precision comparable to the determinations from charm hadron decays [39].

The paper is organized as follows. Section 2 presents the detector, data and simulated event samples and cross-section as well as kinematic definitions. The measurements, of both the \(W^{\pm }\) and the \(Z/\gamma ^*\) reactions, are performed independently for the electron and muon decay channels as described in Sects. 3 and 4. The cross-section results are presented in Sect. 5, which contains the analysis method, a test of electron–muon universality, and a description of the procedure for, and results of, combining the electron and the muon data. In Sect. 6 the integrated and differential cross sections are compared with theoretical calculations using recent NNLO PDF sets. Measurements are also presented of the \(W^{\pm }\) charge asymmetry and various other cross-section ratios. This section concludes with the results of the PDF profiling analysis. Finally, Sect. 7 presents an NNLO QCD fit analysis of the present ATLAS data and the final HERA NC and CC DIS cross-section data, resulting in an improved determination of the strange-quark distribution in the proton and a measurement of \(\vert V_{cs} \vert \). A summary of the paper is presented in Sect. 8.

2 Detector, simulation and definitions

2.1 Detector and data samples

The ATLAS detector [40] comprises a superconducting solenoid surrounding the inner detector (ID) and a large superconducting toroid magnet system with muon detectors enclosing the calorimeters. The ID system is immersed in a 2 T axial magnetic field and provides tracking information for charged particles in a pseudorapidity range matched by the precision measurements of the electromagnetic calorimeter. The inner silicon pixel and strip tracking detectors cover the pseudorapidity range \(|\eta |< 2.5\).1 The transition radiation tracker, surrounding the silicon detectors, contributes to the tracking and electron identification for \(|\eta | < 2.0\).

The liquid argon (LAr) electromagnetic (EM) calorimeter is divided into one barrel (\(|\eta | < 1.475\)) and two end-cap components (\(1.375< |\eta | < 3.2\)). It uses lead absorbers and has an accordion geometry to ensure a fast and uniform response and fine segmentation for optimal reconstruction and identification of electrons and photons. The hadronic steel/scintillator-tile calorimeter consists of a barrel covering the region \(|\eta | < 1.0\), and two extended barrels in the range \(0.8< |\eta | < 1.7\). The copper/LAr hadronic end-cap calorimeter (\(1.5<|\eta |<3.2\)) is located behind the electromagnetic end-cap calorimeter. The forward calorimeter (FCAL) covers the range \(3.2< |\eta | < 4.9\) and also uses LAr as the active material and copper or tungsten absorbers for the EM and hadronic sections, respectively.

The muon spectrometer (MS) is based on three large superconducting toroids with coils arranged in an eight-fold symmetry around the calorimeters, covering a range of \(|\eta |<2.7\). Over most of the \(\eta \) range, precision measurements of the track coordinates in the principal bending direction of the magnetic field are provided by monitored drift tubes. At large pseudorapidities (\(2.0< |\eta | < 2.7\)), cathode strip chambers with higher granularity are used in the layer closest to the IP. The muon trigger detectors consist of resistive plate chambers in the barrel (\(|\eta |<1.05\)) and thin gap chambers in the end-cap regions (\(1.05< |\eta | < 2.4\)), with a small overlap around \(|\eta | \simeq 1.05\).

In 2011, the ATLAS detector had a three-level trigger system consisting of Level-1 (L1), Level-2 (L2) and the Event Filter (EF). The L1 trigger rate was approximately 75 kHz. The L2 and EF triggers reduced the event rate to approximately 300 Hz before data transfer to mass storage.

The data for this analysis were collected by the ATLAS Collaboration during 2011, the final year of operation at \(\sqrt{s}=7\,\text {TeV}\). The analysis uses a total luminosity of \(4.6\,\mathrm {fb}^{-1}\) with an estimated uncertainty of \(1.8\%\) [2], where the main components of the apparatus were operational. Data and simulated event samples were processed with common reconstruction software.

2.2 Simulated event samples

Simulated and reconstructed Monte Carlo (MC) samples are used to model the properties of signals and background processes and to calculate acceptance and efficiency corrections for the extraction of cross sections. Dedicated efficiency and calibration studies with data are used to derive correction factors to account for the small differences between experiment and simulation, as is subsequently described.

The main signal event samples for \(W^{\pm } \rightarrow \ell \nu \) and \(Z/\gamma ^* \rightarrow \ell \ell \) production are generated using the Powheg [41, 42, 43, 44] event generator, with the simulation of parton showers, hadronization and underlying events provided by Pythia6 [45]. Systematic uncertainties in the measurements due to imperfect modelling of the signals are estimated with alternative event samples generated with Powheg interfaced instead to the Herwig [46] and Jimmy [47] programs (referred to later as the Powheg+Herwig sample) as well as MC@NLO [48], also interfaced to the Herwig and Jimmy programs (referred to later as the MC@NLO+Herwig sample). For the MC@NLO and Powheg matrix element calculations the CT10 NLO PDF [49] set is used, whereas showering is performed with CTEQ6L1 [50]. Samples of \(W \rightarrow \tau \nu \) and \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\) events are generated with the Alpgen generator [51] interfaced to Herwig and Jimmy and using the CTEQ6L1 PDF set, and also Powheg interfaced to Pythia8 [52].

All simulated samples of \(W^{\pm } \rightarrow \ell \nu \) and \(Z/\gamma ^* \rightarrow \ell \ell \) production are normalized to the NNLO cross sections calculated by the FEWZ program with the MSTW2008 NNLO PDF set [53]. When employing these samples for background subtraction, an uncertainty in the total cross section of 5% is assigned to account for any uncertainties arising from the PDFs as well as factorization-scale and renormalization-scale uncertainties. As the simulated transverse momentum spectrum of the \(W^{\pm }\) and \(Z/\gamma ^*\) bosons does not describe the one observed in data well, all samples are reweighted by default to the Powheg+Pythia8 AZNLO prediction [54], which describes the \(Z \rightarrow \ell \ell \) data well at low and medium dilepton transverse momentum \(p_{\mathrm {T},\ell \ell } < 50\,\,\text {GeV}\).

Top-quark pair (\(t\bar{t}\)) and single top-quark production are simulated with MC@NLO interfaced to Herwig and Jimmy. The \(t\bar{t} \) cross section is calculated at a top quark mass of \(172.5\,\,\text {GeV}\) at NNLO in QCD including resummation of next-to-next-to-leading logarithmic soft-gluon terms (NNLL) with top++2.0 [55, 56, 57, 58, 59, 60]. The total theoretical uncertainty of the \(t\bar{t}\) production cross section is calculated using the PDF4LHC prescription [61] using the MSTW2008 NNLO [53], CT10 NNLO [62] and NNPDF2.3 5f FFN [63] PDF sets and adding in quadrature the scale and \(\alpha _{\text {S}} \) uncertainties. The single-top-quark cross sections are calculated at approximate NNLO+NNLL accuracy [64, 65, 66, 67].

Inclusive production of dibosons WWWZ and ZZ is simulated with Herwig. The samples are normalized to their respective NLO QCD cross sections [68] with 6% uncertainty.

While most studies of the multijet background are performed using control samples from data, some studies in the muon channels are carried out with Pythia6 samples, where inclusive, heavy-flavour dijet production (\(c\bar{c}\) and \(b\bar{b}\)) is simulated and the samples are filtered for high-\(p_{\text {T}}\) muons from charm or bottom hadron decays.

All generators are interfaced to Photos [69] to simulate the effect of final-state QED radiation (QED FSR). The decays of \(\tau \) leptons in Herwig and Pythia6 samples are handled by Tauola [70]. The passage of particles through the ATLAS detector is modelled [71] using GEANT4 [72]. The effect of multiple pp interactions per bunch crossing (“pile-up”) is modelled by overlaying the hard-scattering event with additional simulated inelastic collision events following the distribution observed in the data with about nine simultaneous inelastic interactions on average. These events are simulated using Pythia6 with the AMBT2 tune [73]. While the simulation of pile-up events reproduces the observed width of the luminous region along the beam direction, a reweighting is applied to match the longitudinal distribution of the hard-scatter vertex to that observed in the data. This is needed to accurately control acceptance and detector effects, which depend on the details of the detector geometry.

2.3 Cross-section definition and fiducial regions

The measurements reported here correspond to inclusive Drell–Yan cross sections with a direct decay of the intermediate boson, \(Z/\gamma ^* \rightarrow \ell \ell \) or \(W \rightarrow \ell \nu \), where \(\ell =e\) or \(\mu \). Other processes that may lead to a pair of leptons, \(\ell \ell \) or \(\ell \nu \), in the final state are subtracted as background. These are \(t\bar{t}\) pair and single top-quark production, cascade decays \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\rightarrow \ell ^+\ell ^- X\) and \(W \rightarrow \tau \nu \rightarrow \ell \nu X\), photon-induced lepton-pair production \(\gamma \gamma \rightarrow \ell \ell \), and gauge boson pair production, with both boson masses exceeding \(20\,\,\text {GeV}\). Experimental contaminations of signals through other channels, such as \(Z/\gamma ^* \rightarrow \ell \ell \) contributing as background to \(W^{\pm }\) or the small, opposite-sign \(W^{\mp }\) fraction in the \(W^{\pm }\) selections, are corrected for as well.

Each channel of the measurement covers somewhat different regions of phase space. For electrons this corresponds to a restriction to \(|\eta _{\ell }|<2.47\) for central electrons, and further the exclusion of the regions \(1.37<|\eta _{\ell }|<1.52\) and \(3.16<|\eta _{\ell }|<3.35\). For muons the acceptance is restricted to \(|\eta _{\ell }|<2.4\).

The combined \(e-\mu \) cross sections are reported in common fiducial regions close to the initial experimental selections so as to involve only minimal extrapolations. The kinematic requirements applied for the cross-section measurements are as follows:
$$\begin{aligned} \text{ Central }\ Z/\gamma ^* \rightarrow \ell \ell :&p_{\mathrm {T}, \ell }> 20\,\,\text {GeV},\ |\eta _{\ell }|<2.5,\ 46< m_{\ell \ell }< 150\,\,\text {GeV}\\ \text{ Forward }\ Z/\gamma ^* \rightarrow \ell \ell :&p_{\mathrm {T}, \ell }> 20\,\,\text {GeV},\ \text{ one } \text{ lepton }\ |\eta _{\ell }|<2.5,\ \text{ other } \text{ lepton }\ 2.5<|\eta _{\ell }|<4.9,\\&\ 66< m_{\ell \ell }< 150\,\,\text {GeV}\\ W^{\pm } \rightarrow \ell \nu \ :&p_{\mathrm {T}, \ell }> 25\,\,\text {GeV},\ |\eta _{\ell }|<2.5,\ p_{\mathrm {T}, \nu }>25\,\,\text {GeV},\ m_\mathrm {T}> 40\,\,\text {GeV}. \end{aligned}$$
Here the charged-lepton transverse momentum and pseudorapidity are denoted by \(p_{\mathrm {T}, \ell }\) and \(\eta _{\ell }\), respectively. The transverse momentum of the neutrino is given by \(p_{\mathrm {T}, \nu }\) and the W-boson transverse mass is calculated as \(m_\mathrm {T}^2 = 2\,p_{\mathrm {T}, \ell }\,p_{\mathrm {T}, \nu }\,[1-\cos (\Delta \phi _{\ell ,\nu })]\), where \(\Delta \phi _{\ell ,\nu }\) is the azimuthal angle between the charged lepton and the neutrino directions. The lepton kinematics used in the definition of the cross sections corresponds to the Born level for QED final-state radiation effects. These fiducial regions differ slightly from those used in Ref. [1] such that the corresponding cross-section results cannot be compared directly.

The integrated charged-current fiducial cross sections are presented separately for \(W^+\), \(W^-\) and their sum. Integrated neutral-current fiducial cross sections are presented for the Z-peak region, corresponding to \(66< m_{\ell \ell }< 116\,\text {GeV}\), where they are most precise.

The differential \(W^{\pm } \rightarrow \ell \nu \) cross sections are measured as a function of the absolute values of the charged-lepton pseudorapidity, \(\eta _{\ell }\), in bins with boundaries given by
$$\begin{aligned}&|\eta _{\ell }| = [0.00,\,0.21,\,0.42,\,0.63,\,0.84,\,1.05,\,1.37, \,1.52,\nonumber \\&\qquad \qquad 1.74,\,1.95,\,2.18,\,2.50]. \end{aligned}$$
(1)
The differential \(Z/\gamma ^*\) cross sections are presented as a function of dilepton rapidity, \(y_{\ell \ell }\), in three intervals of dilepton mass, \(m_{\ell \ell }\), with bin edges
$$\begin{aligned} m_{\ell \ell }= [46,\,66,\,116,\,150]\,\,\text {GeV}. \end{aligned}$$
(2)
In the Z-peak region, the boundaries of the bins in dilepton rapidity \(y_{\ell \ell }\) are chosen to be
$$\begin{aligned}&|y_{\ell \ell }| = [0.0,\,0.2,\,0.4,\,0.6,\,0.8,\,1.0,\,1.2,\,1.4,\,1.6,\nonumber \\&\qquad \qquad \, 1.8,\,2.0,\,2.2,\,2.4], \end{aligned}$$
(3)
while in the adjacent mass intervals, below and above the Z peak, the binning is twice as coarse and ranges also from \(|y_{\ell \ell }|=0\) to 2.4.
A dedicated \(Z/\gamma ^* \rightarrow \ell \ell \) analysis in the electron channel extends into the forward region of \(y_{\ell \ell }\), covering the range from \(|y_{\ell \ell }| =1.2\) to 3.6. This analysis is only performed in the two higher mass intervals, with the boundaries \(m_{\ell \ell }= [66,\,116,\,150]\,\text {GeV}\), as the region below \(m_{\ell \ell }<66\,\text {GeV}\) cannot be measured with good precision with the current lepton \(p_{\text {T}}\) acceptance in this channel. In the Z-peak region of the forward \(Z/\gamma ^*\) analysis the boundaries of the bins in dilepton rapidity \(y_{\ell \ell }\) are chosen as
$$\begin{aligned} |y_{\ell \ell }| = [1.2,\,1.4,\,1.6,\,1.8,\,2.0,\,2.2,\,2.4, \,2.8,\,3.2,\,3.6], \end{aligned}$$
(4)
while for the higher mass interval the same range is divided into six bins of equal size.

3 Electron channel measurements

3.1 Event selection

Events are required to have at least one primary vertex formed by at least three tracks of \(p_{\text {T}} >500\,\text {MeV}\). If multiple vertices are reconstructed, the one with the highest sum of squared transverse momenta of associated tracks, \(\sum p_{\text {T}}^{2} \), is selected as the primary vertex.

Central electron candidates are reconstructed from an ID track matched to an energy deposit in the EM calorimeter [74]. They are required to be within the coverage of the ID and the precision region of the EM calorimeter, \(|\eta |< 2.47\). The transition region between the barrel and end-cap calorimeters, \(1.37<|\eta |<1.52\), is excluded, as the reconstruction quality is significantly reduced compared to the rest of the pseudorapidity range. The electron momentum vector is calculated by combining the calorimeter measurement of the energy and the tracker information on the direction. The electron is required to satisfy “tight” identification criteria [74] based on the shower shapes of the cluster of energy in the calorimeter, the track properties, and the track-to-cluster matching. The combined efficiency for electrons from W and Z decays to be reconstructed and to meet these “tight” identification criteria depends strongly on both \(\eta \) and \(p_{\text {T}} \). In the most central region of the detector, at \(|\eta |<0.8\), this efficiency is about 65% at \(p_{\text {T}} =20\,\,\text {GeV}\) and increases to about 80% at \(p_{\text {T}} =50\,\,\text {GeV}\). In the more forward region, \(2.0<|\eta |<2.47\), the corresponding efficiencies are in the range 50–75% for transverse momenta \(p_{\text {T}} = 20\)\(50\,\,\text {GeV}\).

The same “tight” requirements are imposed for all central electron candidates to enable a coherent treatment across all \(W^\pm \) and \(Z/\gamma ^*\) analyses, even though the background rejection is less crucial for the \(Z/\gamma ^*\) analysis with two central electrons. To improve the rejection of background from non-isolated electrons, converted photons, or hadrons misidentified as electrons, isolation criteria are imposed on the electron candidates in the \(W \rightarrow e \nu \) and forward \(Z/\gamma ^* \rightarrow e^+e^-\) analyses. The isolation of central electron candidates in these channels is implemented by setting an upper limit on both the energy measured in the calorimeter in a cone of size \(\Delta R = 0.2\) around the electron cluster and the sum of transverse momenta of all tracks in a cone of size \(\Delta R = 0.4\) around the trajectory of the electron candidate. The contribution from the electron candidate itself is excluded in both cases. The specific criteria are optimized as a function of electron \(\eta \) and \(p_{\text {T}}\) to have a combined efficiency of about 95% in the simulation for isolated electrons from the decay of a W or Z boson.

Forward electron candidates are reconstructed in the region \(2.5< |\eta | < 4.9\), excluding the transition region between the end-cap and the FCAL calorimeter, 3.16\(<|\eta |<\)3.35, and are required to satisfy “forward tight” identification requirements with a typical efficiency in the range of 65–85% [74]. As the forward region is not covered by the ID, the electron identification has to rely on calorimeter cluster shapes only. The forward electron momentum is determined from the calorimeter cluster energy and position.

In an inclusive \(W \rightarrow \ell \nu \) analysis, signal events can be considered to consist of three contributions: the isolated charged lepton, the undetected neutrino, and any further particles produced in the hadronization of quarks and gluons produced in association with the W boson. This last contribution is referred to as the hadronic recoil [75]. The missing transverse momentum, \(E_{\text {T}}^{\text {miss}}\), is given by the negative vectorial sum of the transverse momentum components of the charged lepton and the hadronic recoil and identified with the undetected neutrino. The \(E_{\text {T}}^{\text {miss}}\) is reconstructed from energy deposits in the calorimeters and muons reconstructed in the MS [76, 77]. Calorimeter energy deposits associated to an electron candidate meeting the “medium” identification criteria [74] and exceeding \(p_{\text {T}} >10\,\,\text {GeV}\) are calibrated to the electron scale. Alternatively, if calorimeter energy deposits can be associated to a jet reconstructed with the anti-\(k_t\) algorithm with radius parameter \(R=0.6\) and \(p_{\text {T}} >20 \,\text {GeV}\), the calibrated jet is used [78]. Finally, identified combined and isolated muons, as described in Sect. 4, with \(p_{\text {T}} >10\,\,\text {GeV}\), are used in the \(E_{\text {T}}^{\text {miss}}\) reconstruction, removing the energy deposits of such muons in the calorimeter. Any remaining energy deposits in the calorimeters are added to the \(E_{\text {T}}^{\text {miss}}\) after calibration with the local hadronic calibration [78].

During data collection, events with one central electron were selected with a single-electron trigger with “medium” identification criteria and a \(p_{\text {T}}\) threshold of 20 or \(22\,\text {GeV}\) [79]. The rise in threshold was enforced by the increasing instantaneous luminosity delivered by the LHC during 2011. Events with two central electrons are furthermore selected online by a dielectron trigger in which two electrons are required to satisfy the “medium” identification criteria and a lower \(p_{\text {T}}\) threshold of \(12\,\text {GeV}\).

To select W-boson events in the electron channel, exactly one central identified and isolated electron is required with a transverse momentum \(p_{\text {T}} > 25\,\text {GeV}\). This electron is also required to have passed the single-electron trigger. Events with at least one additional central electron meeting the “medium” identification criteria [74] and \(p_{\text {T}} > 20\,\,\text {GeV}\) are rejected to reduce background from \(Z/\gamma ^* \rightarrow e^+e^-\) events. The missing transverse momentum is required to exceed \(E_{\text {T}}^{\text {miss}} = 25\,\text {GeV}\) and the transverse mass of the electron–\(E_{\text {T}}^{\text {miss}}\) system, \(m_\mathrm {T}\), has to be larger than \(40\,\text {GeV}\).

The selection for the central \(Z/\gamma ^* \rightarrow e^+e^-\) analysis requires exactly two identified electrons with \(p_{\text {T}} >20\,\,\text {GeV}\). These two electrons must have passed the dielectron trigger selection. No requirement is made on the charge of the two electron candidates. The analysis examines the invariant mass \(m_{ee}\) interval from 46 to \(150\,\text {GeV}\).

For the selection of forward \(Z/\gamma ^* \rightarrow e^+e^-\) events over an extended range of rapidity, a central identified and isolated electron is required as in the \(W \rightarrow e \nu \) channel, but lowering the transverse momentum threshold to the minimum \(p_{\text {T}} = 23\,\text {GeV}\) accessible with the single-electron trigger. A second electron candidate with \(p_{\text {T}} > 20\,\text {GeV}\) has to be reconstructed in the forward region. The invariant mass of the selected pair is required to be between 66 and \(150\,\text {GeV}\).

3.2 Calibration and efficiencies

Comprehensive evaluations of the reconstruction of electrons are described in Refs. [74, 80]. The energy of the electron is calibrated using a multivariate algorithm trained on simulated samples of single electrons to achieve an optimal response and resolution. Residual corrections to the energy scale and resolution are determined from data as a function of \(\eta \) in the central and forward regions by comparing the measured \(Z \rightarrow e^+e^-\) line shape to the one predicted by the simulation [80]. The energy-scale corrections applied to the data are typically within a range of \({\pm }\)2% and the systematic uncertainty of the energy scale is typically \(0.1\%\). Resolution corrections of around \((1.0 \pm 0.3)\%\) are applied to the simulation to match the data, where the quoted uncertainty corresponds to the precision of the correction.

The electron efficiencies are controlled in several steps corresponding to the reconstruction and identification of electron candidates as well as the isolation and trigger requirements described above. All central electron efficiencies are measured as a function of the electron pseudorapidity and electron transverse momentum, while in the forward region \(2.5<|\eta |<4.9\) the corrections are binned in electron pseudorapidity only. All uncertainties in the electron efficiency measurements are classified as being of statistical or systematic origin, where the latter has components correlated and uncorrelated across \(\eta \) and \(p_{\text {T}}\)  [74]. This classification allows the corresponding systematics to be propagated correctly to the final measurement as described in Sect. 5.4.

The efficiencies for electrons from W or Z decays in the central region to satisfy the “tight” identification requirements are measured using two different tag-and-probe methods performed with W and Z data samples [74]. The data-to-simulation ratios of the efficiencies measured in these two samples are combined. They are typically within \(\pm 0.05\) of unity with significant variations as a function of pseudorapidity. The total uncertainty in these factors is 0.5–1.0%.

The central electron trigger, reconstruction and isolation efficiencies as well as the forward electron identification efficiencies are determined using the Z tag-and-probe method only. Corresponding correction factors are derived in all cases and applied to the simulation. The efficiencies for the reconstruction of central electrons are measured with a precision of mostly better than 0.5% and are found to be described by the simulation within typically \({\pm } 1\%\). The efficiency of the electron isolation requirement employed in the \(W \rightarrow e \nu \) and forward \(Z/\gamma ^* \rightarrow e^+e^-\) analysis is well described by the simulation within \({\pm } 1\%\) variations and the corresponding correction factors have typically \({<}0.3\%\) uncertainty. The electron trigger efficiencies are measured separately for the single-electron and dielectron triggers and for various different configurations employed during the data-taking. Most data-to-simulation correction factors for the trigger selection are within \({\pm } 1\%\) of unity and determined with a precision of better than 1%.

The forward electron reconstruction efficiency has been found to be nearly 100% in the simulation. The identification efficiencies are found to be lower in data than in the simulation by about 10% and are measured with a precision of 3–8%.

The distinction between \(W^+\) and \(W^-\) events relies on the measurement of the charge of the decay electron. The charge misidentification probability as a function of \(\eta \) is determined in both data and simulation from the fraction of \(Z \rightarrow e^+e^-\) events where both electrons are reconstructed with the same sign. It depends on the identification criteria and in general increases at large \(|\eta |\) [74]. A correction is applied to the simulation to match the rate observed in the data. In the \(Z/\gamma ^* \rightarrow e^+e^-\) analysis, the majority of dielectron events reconstructed with same charge, with an invariant mass close to the Z-boson mass and satisfying the identification requirements, are indeed signal events. The efficiency loss of an opposite-charge selection through charge misidentification of either electron incurs a non-negligible systematic uncertainty, which is avoided by not applying the opposite-charge selection in the \(Z/\gamma ^* \rightarrow e^+e^-\) analysis.

Uncertainties in the \(E_{\text {T}}^{\text {miss}}\) scale and resolution are determined by the corresponding uncertainties for the electrons [80], muons [81], and jets [78] used in the reconstruction. The uncertainties in the remaining “soft” part are evaluated by reconstructing the hadronic recoil in \(Z \rightarrow \ell \ell \) events and comparing the recoil response to the dilepton system in both data and simulation [77].

3.3 Backgrounds

The backgrounds contributing in the \(W \rightarrow e \nu \) channel can be divided into two categories: (1) electroweak background processes and top-quark production, which are estimated using MC prediction, and (2) background from multijet production determined with data-driven methods.

The largest electroweak background in the \(W \rightarrow e \nu \) channel is due to the \(W \rightarrow \tau \nu \) production where isolated electrons are produced in the decay \(\tau \rightarrow e\bar{\nu }\nu \). Relative to the number of all \(W^\pm \) candidate events, this contribution is estimated to be between 1.6 and 1.9% for the different bins of the pseudorapidity with a similar fraction in \(W^+\) and \(W^-\) events. The contamination of the \(W \rightarrow e \nu \) sample by \(Z/\gamma ^* \rightarrow e^+e^-\) is determined to be between 0.7 and 1.3%. Further contributions, at the 0.1–0.5% level, arise from \(t\bar{t}\), \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\), single top-quark and diboson production. The sum of electroweak and top-quark backgrounds is between 3.3 and 3.9% in the \(W^-\) channel and between 2.8 and 3.5% in the \(W^+\) channel. In contrast to the \(W \rightarrow \tau \nu \) background, the other electroweak and top-quark background yields are of similar absolute size in \(W^+\) and \(W^-\) channels.

Multijet production from QCD processes is a significant source of background in the \(W \rightarrow e \nu \) channel when non-isolated electrons, converted photons or hadrons are misidentified as isolated electrons and neutrinos from hadron decays or resolution effects cause a significant measurement of missing transverse momentum in the event. This background is estimated from the data using a template fit of the \(E_{\text {T}}^{\text {miss}}\) distribution in a normalization region that differs from the signal region by relaxed the \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) requirements. A template to represent the multijet background contribution is selected from data using the same kinematic requirements as for signal electrons, but inverting a subset of the electron identification criteria and requiring the electron candidate not to be isolated. The isolation is estimated from the energy deposited in the calorimeter in a cone of size \(\Delta R = 0.3\) around the electron candidate, denoted by \(E_\mathrm {T}^\mathrm {cone30}\), and the condition \(E_\mathrm {T}^\mathrm {cone30}/p_{\text {T}} >0.20\) is imposed. A second template that combines the \(W \rightarrow e \nu \) signal and electroweak and top-quark contributions is taken from the simulation.

The relative fraction of the two components is determined by a fit to the data in the normalization region. The normalization region contains the signal region to constrain the signal contribution, relaxes the lower \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) requirements to increase the multijet fraction and furthermore imposes \(E_{\text {T}}^{\text {miss}} <60\,\,\text {GeV}\) to avoid a mismodelling of the high \(E_{\text {T}}^{\text {miss}}\) region, which was established in a study of the \(Z \rightarrow e^+e^-\) sample. No prior knowledge of either template’s normalization is assumed, and the fit is performed separately for the \(W^+\) and \(W^-\) channels and also in each bin of electron pseudorapidity to obtain the background for the differential analysis. The resulting \(E_{\text {T}}^{\text {miss}}\) distribution for the case of the inclusive \(W^+\) selection is shown in the left panel of Fig. 1. The background in the signal region \(E_{\text {T}}^{\text {miss}} > 25\,\,\text {GeV}\) and \(m_\mathrm {T}>40\,\,\text {GeV}\) is then obtained by multiplying the multijet yield determined in the fit by the fraction of events in the template sample that satisfy the signal region and normalization region \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) requirements, respectively. This multijet estimate is found to change in a systematic way when the \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) requirements imposed for the normalization region are progressively tightened to resemble more the \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) requirements of the signal region. This dependence is measured and linearly extrapolated to the point where the normalization region has the same \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) thresholds as the signal region. A corresponding correction of typically 10% is applied to obtain an improved multijet estimate, while the full size of this correction is assigned as a systematic uncertainty. Further systematic uncertainties are derived from variations of the background and signal template shapes. Background shape uncertainties are obtained from varied template selection criteria by changing the \(E_\mathrm {T}^\mathrm {cone30}/p_{\text {T}} \) selection, requiring the electron-candidate track to have a hit in the innermost layer of the ID, or changing the subset of identification criteria that the electron is allowed to not satisfy from the “tight” to the “medium” identification level. The shape uncertainties on the signal template from the detector systematic uncertainties discussed in Sect. 3.2 and using the alternative signal MC simulation samples discussed in Sect. 2.2 are considered as well.

The multijet background in the signal region ranges from 2.1% in the most central pseudorapidity bin to 6.9% in the most forward bin of the measurement for the \(W^+\) and from 2.8 to 11% for the \(W^-\) channel respectively. The total systematic uncertainty is at the level of 15–25% and the statistical uncertainty is typically a factor of ten smaller. While this background is determined separately for \(W^+\) and \(W^-\) samples, the resulting background yields for the two charges are found to be compatible within their statistical uncertainties. An alternative method for the determination of the multijet fractions, following Ref. [7], gives an estimate well within the systematic uncertainty assigned to the baseline determination described above.
Fig. 1

Distributions used for the estimation of the multijet background in the \(W^+ \rightarrow e^+ \nu \) channel (left) and \(Z \rightarrow e^+e^-\) channel (right). For the \(W^+ \rightarrow e^+ \nu \) channel, the result of the template fit in a multijet-enhanced region using the \(E_{\text {T}}^{\text {miss}}\) distribution is shown. The vertical line indicates the upper boundary (\(E_{\text {T}}^{\text {miss}} = 60\,\,\text {GeV}\)) of the region used in the fit. The label “EWK+top” refers to the electroweak and top-quark background contributions estimated from MC simulation, which are here treated in a common template together with the \(W \rightarrow e \nu \) signal. In the \(Z \rightarrow e^+e^-\) channel, the region of large isolation \(E_\mathrm {T}^\mathrm {cone30}/p_{\text {T}} \), between the two vertical lines, is used to normalize the multijet template from data. The shown distribution is taken from the central \(Z \rightarrow e^+e^-\) analysis in the region \(66<m_{ee}<116\,\,\text {GeV}\). The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”

In the central \(Z/\gamma ^* \rightarrow e^+e^-\) analysis, the relative background contributions due to electroweak processes with two isolated electrons, from \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\), \(t\bar{t}\), single top-quark, and diboson production are estimated using the corresponding MC samples. That background is dominated by the \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\) process below the Z peak and the \(t\bar{t}\) process above the Z peak, while it is very small in the Z-peak region \(m_{ee}=66\)\(116\,\,\text {GeV}\). The background from electroweak and top-quark processes ranges from 6.2 to 8.8% for \(m_{ee}=46\)\(66\,\,\text {GeV}\), 0.23–0.46% for \(m_{ee}=66\)\(116\,\,\text {GeV}\) and 2.0–8.5% for \(m_{ee}=116\)\(150\,\,\text {GeV}\), where a larger background contamination is typically found at central rapidity.

To separate the central \(Z/\gamma ^* \rightarrow e^+e^-\) signal from the multijet background, the analysis relies on the same \(E_\mathrm {T}^\mathrm {cone30}\) quantity as described for the \(W \rightarrow e \nu \) case. The minimum of the value \(E_\mathrm {T}^\mathrm {cone30}/p_{\text {T}} \) of the two electron candidates is chosen to represent each event, as it was found to provide optimal discrimination. The multijet fraction is then estimated from data by fitting this distribution using a template method similar to the \(W \rightarrow e \nu \) analysis. The background template is selected with inverted electron identification requirements and the signal \(Z/\gamma ^* \rightarrow e^+e^-\), electroweak and \(t\bar{t}\) templates are taken from simulation. The non-isolated sample where the minimum of \(E_\mathrm {T}^\mathrm {cone30}/p_{\text {T}} \) of both electrons exceeds a certain value is found to be dominated by multijet background and is used to adjust the normalization of the background template, taking into account the small signal contamination. The right panel of Fig. 1 shows the isolation distribution used to obtain the multijet background in the Z-peak region. This procedure yields a fraction of multijet background decreasing towards larger rapidity with a typical size between 1.9 and 5.0% in the low dielectron mass bin, between 0.14 and 1.6% at high dielectron mass and between 0.02 and 0.15% near the Z peak. Uncertainties are dominated by the statistical uncertainty of the sample containing non-isolated electron candidates and by the sensitivity of the procedure to the threshold applied to the minimum of \(E_\mathrm {T}^\mathrm {cone30}/p_{\text {T}} \) to select the non-isolated region and amount to typically 20% at and above the Z peak (\(66<m_{\ell \ell }< 150\,\,\text {GeV}\)) and 10% below (\(46<m_{\ell \ell }< 66\,\,\text {GeV}\)).

In the forward \(Z/\gamma ^* \rightarrow e^+e^-\) analysis, the multijet background is estimated with the same technique as described for the central \(Z \rightarrow e^+e^-\) analysis, although only the isolation distribution of the central electron is used. In total the multijet background is estimated to be 1.4–2.4% in the Z-peak region and 18–26% in the high-mass region. The total relative uncertainties in these estimates are at the level of 10%.

Furthermore, there is a significant contamination from \(W(\rightarrow e\nu )+\)jets events in the forward \(Z/\gamma ^* \rightarrow e^+e^-\) channel, where the electron from the W decay is detected in the central region and an associated jet mimics the signature of an electron in the forward region. As the associated jet production and fake-electron rates may be poorly modelled by the simulation, the \(W \rightarrow e \nu \) background component is determined by a data-driven procedure. A control region is constructed starting from the nominal forward \(Z/\gamma ^* \rightarrow e^+e^-\) event selection, but removing the Z-peak region \(m_{ee}= 80\)\(100\,\text {GeV}\) and requiring \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) selections similar to the \(W \rightarrow e \nu \) signal analysis. It is found that the Powheg+Pythia6\(W \rightarrow e \nu \) samples describe well all relevant kinematic variables such as the invariant mass \(m_{ee}\) or dielectron rapidity \(y_{ee}\) in the control region after applying an additional normalization factor of \(1.6 \pm 0.2\). This factor is then also applied to the Powheg+Pythia6\(W \rightarrow e \nu \) samples in the forward \(Z/\gamma ^* \rightarrow e^+e^-\) signal region. The assigned uncertainty of this scale factor covers systematic uncertainties induced by the extrapolation and is estimated using variations of the control region with different \(E_{\text {T}}^{\text {miss}}\) or \(m_\mathrm {T}\) selections. Other, smaller electroweak contributions from \(t\bar{t}\) and diboson production are estimated using the corresponding MC samples. The total \(W \rightarrow e \nu \) and other electroweak backgrounds to the forward \(Z/\gamma ^* \rightarrow e^+e^-\) channel is about 1.9% at the Z peak and up to 22% in the high-mass region. While the multijet background fraction is found to be essentially independent of the dielectron rapidity \(y_{ee}\), the \(W \rightarrow e \nu \) and other electroweak backgrounds decrease towards larger \(y_{ee}\).

4 Muon channel measurements

4.1 Event selection

The same requirement for a primary vertex is imposed as for the electron channels. The analysis uses muon candidates that are defined as “combined muons” in Ref. [81]. For combined muons an independent track reconstruction is performed in the ID and the MS, and a combined track is formed using a \(\chi ^2\) minimization procedure. In order to reject cosmic-ray background, the z position of the muon track extrapolated to the beam line has to match the z coordinate of the primary vertex within \(\pm 1\) cm. The ID track is required to satisfy the track-hit requirements described in Ref. [81]; in addition, the ID track must include a position measurement from the innermost layer of the pixel detector. To reduce background from non-isolated muons produced in the decay of hadrons within jets, muons are required to be isolated. This is achieved with a track-based isolation variable defined as the sum of transverse momenta of ID tracks with \(p_{\text {T}} > 1\,\text {GeV}\) within a cone \(\Delta R = 0.4\) around the muon direction and excluding the muon track, denoted as \(p_\mathrm {T}^\mathrm {cone40}\). The value of \(p_\mathrm {T}^\mathrm {cone40}\) is required to be less than 10% of the muon \(p_{\text {T}}\). The efficiency of this isolation requirement is about 92% for signal muons with \(p_{\text {T}} =20\,\,\text {GeV}\) and increases to about 99% for \(p_{\text {T}} >40\,\,\text {GeV}\).

Events in the muon channels were selected during data-taking with a trigger demanding the presence of a single muon with \(p_{\text {T}} > 18\,\,\text {GeV}\). The selection of W events demands one muon with \(p_{\text {T}} > 25\,\text {GeV}\) and \(|\eta | < 2.4\), while a veto on any further muon with \(p_{\text {T}} >20\,\,\text {GeV}\) is imposed to reduce contamination from the \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) process. The same missing transverse momentum \(E_{\text {T}}^{\text {miss}} >25\,\,\text {GeV}\) and transverse mass \(m_\mathrm {T}>40\,\,\text {GeV}\) requirements are imposed as in the \(W \rightarrow e \nu \) analysis. Events for the \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) analysis are selected by requiring exactly two muons with \(p_{\text {T}} > 20\,\text {GeV}\) and \(|\eta | < 2.4\). The two muons are required to be of opposite charge, and the invariant mass of the \(\mu ^+\mu ^-\) pair, \(m_{\mu \mu }\), is required to be between 46 and 150 GeV.

4.2 Calibration and efficiencies

Muon transverse momentum corrections and trigger and reconstruction efficiencies are measured using the same methods as applied in Ref. [1] and documented in Refs.  [81, 82]. Muon transverse momentum resolution corrections are determined comparing data and MC events as a function of \(\eta \) in the barrel and end-cap regions [81]. They are derived by fitting the \(Z \rightarrow \mu ^+\mu ^-\) invariant mass spectrum and the distributions of \(1/p_{\text {T}} ^\mathrm {ID} - 1/p_{\text {T}} ^\mathrm {MS}\) for both \(\mu ^+\) and \(\mu ^-\), where \(p_{\text {T}} ^\mathrm {ID}\) and \(p_{\text {T}} ^\mathrm {MS}\) are the muon transverse momenta in \(Z \rightarrow \mu ^+\mu ^-\) and \(W \rightarrow \mu \nu \) events, measured in only the ID and the muon spectrometer, respectively. Muon transverse momentum scale corrections are measured by comparing the peak positions in the data and MC \(Z \rightarrow \mu ^+\mu ^-\) invariant mass distributions. Further charge-dependent corrections are derived by comparing the muon transverse momentum distributions in \(Z \rightarrow \mu ^+\mu ^-\) events for positive and negative muons [81, 83]. The momentum scale in the simulation is found to be higher than in the data by about 0.1–0.2% in the central region and 0.3–0.4% in the forward region. An additional, momentum-dependent correction is applied to account for charge-dependent biases. For a transverse momentum of \(40\,\text {GeV}\) this correction is less than 0.1% in the central region and extends to 0.5% in the forward region. The muon momentum resolution is found to be 2–5% worse in the data than in the simulation. All scale and resolution corrections are applied to the simulated event samples to match the characteristics of the data.

Muon trigger and reconstruction efficiencies are measured with a tag-and-probe method in a sample of \(Z \rightarrow \mu ^+\mu ^-\) events. Imposing tighter selections on the invariant mass and on the angular correlation between the two muons reduces the background contamination and allows one of the muons to be selected with looser requirements to measure the efficiencies [81]. The reconstruction efficiencies are measured using a factorized approach: the efficiency of the combined reconstruction is derived with respect to the ID tracks, and the efficiency of reconstructing a muon in the inner tracker is measured relative to the MS tracks. The isolation selection efficiency is estimated relative to combined tracks. Finally, the trigger efficiency is measured relative to isolated combined muons.

The measured data-to-simulation ratios of efficiencies are applied as corrections to the simulation. In general, these factors are close to unity, indicating that the simulation reproduces detector effects very well. The corrections for the combined reconstruction efficiency are 1–2%, except for a small region around \(|\eta | \simeq 1.0\) where a larger correction of 6–7% is applied to account for muon chambers simulated but not installed. These correction factors are parameterized in \(\eta \) and \(\phi \) and they are determined with a 0.1–0.3% relative uncertainty. The efficiency of the isolation requirement is also modelled well in the simulation. The correction is derived as a function of the transverse momentum and is about 1% for \(p_{\text {T}} = 20\,\text {GeV}\) and decreases as \(p_{\text {T}}\) increases to reach about 0.2% for \(p_{\text {T}} > 40\,\,\text {GeV}\). The relative uncertainty of the isolation efficiency correction is about 0.1–0.3%. A larger correction is needed to account for the mismodelling of the trigger efficiency in simulation, ranging from 5–10%. This is parameterized as a function of \(\eta \) and \(p_{\text {T}}\) and known with a 0.1–0.8% relative uncertainty.

4.3 Backgrounds

The electroweak background in the \(W \rightarrow \mu \nu \) channel is dominated by \(W \rightarrow \tau \nu \) and \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) events and is estimated with the simulation. Relative to the number of all \(W^\pm \) candidate events, the \(W \rightarrow \tau \nu \) contribution is determined to be between 1.9 and 2.1% for the different bins of pseudorapidity and is a similar fraction of \(W^+\) and \(W^-\) events. The \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) contribution is estimated to be between 1.1 and 5.7%. Further contributions at the 0.1–0.8% level arise from \(t\bar{t}\), \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\), single top-quark and diboson production. The sum of electroweak and top-quark backgrounds ranges from 4.5 to 9.6% in the \(W^-\) channel and from 4.0 to 7.0% in the \(W^+\) channel. In contrast to \(W \rightarrow \tau \nu \) background, the other electroweak and top-quark background yields are of similar absolute size in \(W^+\) and \(W^-\) events.

The multijet background in the \(W \rightarrow \mu \nu \) channel originates primarily from heavy-quark decays, with smaller contributions from pion and kaon decays in flight and fake muons from hadrons that punch through the calorimeter. Given the uncertainty in the dijet cross-section prediction and the difficulty of properly simulating non-prompt muons, the multijet background is derived from data. The number of background events is determined from a binned maximum-likelihood template fit to the \(E_{\text {T}}^{\text {miss}}\) distribution, as shown in the left panel of Fig. 2. The fit is used to determine the normalization of two components, one for the signal and electroweak plus top-quark backgrounds, taken from simulation, and a second for the multijet background, derived from data. No prior knowledge of the normalization of the two components is assumed. The multijet template is derived from a control sample defined by reversing the isolation requirement imposed to select the signal and without applying any requirement on \(E_{\text {T}}^{\text {miss}}\). The fits are done separately for \(W^+\) and \(W^-\) events and in each \(\eta \) region of the differential cross-section measurement.

This analysis yields a fraction of multijet background events between 2.7% in the most central pseudorapidity bin and 1.3% in the most forward bin of the measurement for the \(W^+\) channel and between 3.5 and 2.6% for the \(W^-\) channel, respectively. The systematic uncertainty, dominated by the uncertainty in the \(E_{\text {T}}^{\text {miss}}\) modelling for signal events in simulation, is estimated to be about 0.4–0.8% relative to the number of background events. While this background is determined separately for \(W^+\) and \(W^-\) samples, the resulting background yields are found to be compatible between both charges within the statistical uncertainty. As in the electron channel, the multijet background was also determined with an alternative method following Ref. [7], which gives an estimate well within the systematic uncertainty assigned to the baseline determination described above.

The background contributions in the \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) channel due to isolated muons from \(t\bar{t}\), \(Z/\gamma ^* \rightarrow \tau ^+\tau ^-\), and diboson production behave similarly to those in the electron channel. In the Z-peak region, \(m_{\mu \mu }=66\)\(116\,\,\text {GeV}\), these are estimated to be 0.1, 0.07, and 0.1%, respectively. The total background from electroweak and top-quark processes outside the Z-peak region is around 6% for \(m_{\mu \mu }=46\)\(66\,\,\text {GeV}\) and around 4% for \(m_{\mu \mu }=116\)\(150\,\,\text {GeV}\).

The multijet background in the \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) channel is estimated from data using various methods. The first class of methods is based on binned maximum-likelihood template fits using different discriminating distributions: the isolation, transverse impact parameter and \(p_{\text {T}}\) of the muon, and the dimuon invariant mass. The templates for the multijet background are derived in most cases from data control samples obtained by inverting the requirements on muon isolation or the opposite-charge requirement on the muon pair, depending on the quantity fitted. Alternative templates are also derived from simulation of inclusive heavy-flavour production with semileptonic decays of charm or bottom hadrons to muons. The right panel of Fig. 2 shows the result of the template fit in the muon isolation distribution to determine the absolute scale of the multijet background, which is then extrapolated to the isolated region. For this particular method, the multijet template is modelled by a combination of same-charge data events, used to represent the background from light-quark production, and a contribution from simulated heavy-flavour production, where the small same-charge fraction is subtracted from the dominant opposite-charge dimuon contribution.

In addition to the template fits, a method extrapolating from control regions defined by inverting the isolation, opposite charge, or both requirements is employed. All methods, apart from the template fit in \(m_{\mu \mu }\), are performed separately in the three mass regions of the differential \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) cross-section measurements. The fraction of background events is calculated as the weighted average of these measurements and found to be \(0.09\%\) in the \(m_{\mu \mu }=66\)\(116\,\text {GeV}\) mass region. The relative statistical uncertainty is \(50\%\). A relative systematic uncertainty of \(80\%\) is assigned based on the spread of the weighted measurements. In the \(m_{\mu \mu }= 46\)–66 (116–150) \(\,\text {GeV}\) mass region the fraction of multijet background events is estimated to be 0.5 (0.2)% with relative statistical and systematic uncertainties of \(15\%\) (\(14\%\)) and \(80\%\) (\(60\%\)), respectively.

The shape of the multijet background as a function of \(y_{\mu \mu }\) is derived from a simulated sample of multijet events selected with a looser muon isolation requirement to increase the statistical precision. Systematic uncertainties in the shape of the multijet background as a function of \(y_{\mu \mu }\) are assessed by comparing the shape in simulation obtained with the looser and nominal muon selections as well as comparing the shape predicted by the simulation to the shape in a data control region, where at least one muon fails either the isolation or transverse impact parameter requirements. An additional relative uncertainty of 22% is obtained, treated as uncorrelated in rapidity and mass bins.

Cosmic-ray muons overlapping in time with a collision event are another potential source of background. From a study of non-colliding bunches, this background contribution is found to be negligible.
Fig. 2

Distributions used for the estimation of the multijet background in the \(W \rightarrow \mu \nu \) channel (left) and \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) channel (right). For the \(W \rightarrow \mu \nu \) channel, the result of the template fit using the \(E_{\text {T}}^{\text {miss}}\) distribution is shown. The vertical line indicates the upper boundary (\(E_{\text {T}}^{\text {miss}} = 60\,\,\text {GeV}\)) of the region used in the fit. The label “EWK+top” refers to the electroweak and top-quark background contributions estimated from MC simulation, which are here treated in a common template together with the \(W \rightarrow \mu \nu \) signal. In the \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) channel, the full \(p_\mathrm {T}^\mathrm {cone40}/p_{\text {T}} \) distribution is used to normalize the multijet template from data. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”

5 Cross-section results

5.1 Analysis procedure

The integrated and differential \(W^+ \rightarrow \ell ^+\nu \), \(W^- \rightarrow \ell ^-\bar{\nu }\), and \(Z/\gamma ^* \rightarrow \ell \ell \) production cross sections times the branching ratio for decays into a single lepton flavour (\(\ell =e\) or \(\mu \)) are measured in fiducial volumes as defined in Sect. 2.3. Integrated fiducial cross sections in the electron (muon) channel are computed following the equation
$$\begin{aligned} \sigma ^\mathrm {fid,e(\mu )}_{W \rightarrow e(\mu )\nu [Z\rightarrow ee(\mu \mu )]} = \frac{N_{W[Z]} - B_{W[Z]}}{{C_{W[Z]}}\cdot L_\mathrm {int}} , \end{aligned}$$
(5)
where \(N_{W[Z]}\) is the number of observed signal candidates in data and \(B_{W[Z]}\) is the number of background events expected in the selected sample. The integrated luminosity of the sample is \(L_\mathrm {int}=(4.58\pm 0.08)\,\mathrm {fb}^{-1}\) for all channels except the \(W \rightarrow e \nu \) analysis, where it is \(L_\mathrm {int}=(4.51\pm 0.08)\,\mathrm {fb}^{-1}\). A correction for the event detection efficiency is applied with the factor \(C_{W[Z]}\) , which is obtained from the simulation as
$$\begin{aligned} {C_{W[Z]}}= \frac{N^\mathrm {MC, rec}_{W[Z]}}{N^\mathrm {MC, gen, fid}_{W[Z]}}. \end{aligned}$$
(6)
Here, \(N^\mathrm {MC, rec}_{W[Z]}\) is the sum of event weights after simulation, reconstruction and selection, adjusted for the observed data-to-simulation differences such as in reconstruction, identification, and trigger efficiencies. The denominator \(N^\mathrm {MC, gen, fid}_{W[Z]}\) is computed with generator-level information after fiducial requirements. To correct the measurements for QED FSR effects, the fiducial requirements at generator level are implemented using the lepton momenta before photon radiation. The lepton pairs (\(\ell ^+\ell ^-\), \(\ell ^+\nu \) or \(\ell ^-\bar{\nu }\)) are required to originate directly from the decay of the \(Z/\gamma ^*\) or \(W^\pm \) bosons. The \(C_{W[Z]}\) correction is affected mostly by experimental uncertainties, which are described in Sects. 3 and 4.

The following uncertainties in \(C_{W[Z]}\) of theoretical origin are considered. PDF-induced uncertainties are determined by reweighting the signal samples [84] to the 26 eigenvectors of the CT10 set and scaling the resulting uncertainty to 68% confidence level (CL). The effect of an imperfect description of the boson transverse momentum spectra is estimated by an additional reweighting of the \(W^\pm \) and \(Z/\gamma ^*\) samples, beyond that discussed in Sect. 2.2, by the data-to-simulation ratio observed in the Z-peak region. Uncertainties related to the implementation of the NLO QCD matrix element and its matching to the parton shower are estimated from the difference between the \(C_{W[Z]}\) correction factors obtained from the Powheg+Herwig and MC@NLO+Herwig signal samples. A similar systematic uncertainty related to the signal modelling is estimated by changing the parton showering, hadronization, and underlying event by comparing analysis results using Powheg+Pythia6 and Powheg+Herwig samples. When changing the signal generator, the \(C_{W[Z]}\) correction factors vary by small amounts due to differences in the simulated charged-lepton and neutrino kinematics, the detector response to the hadronic recoil, and the electron and muon identification and isolation efficiencies. The full data-driven estimate of multijet background in the \(W \rightarrow \ell \nu \) channels is repeated when changing the signal samples, as the reconstructed \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) shapes have a significant impact in the fit.

For the measurement of charge-separated \(W^+\) and \(W^-\) cross sections, the \(C_W\) factor is modified to incorporate a correction for event migration between the \(W^+\) and \(W^-\) samples as
$$\begin{aligned} C_{W^+} = \frac{N^\mathrm {MC, rec+}_{W}}{N^\mathrm {MC, gen+, fid}_{W}} \,\,\,\,\,\,\text{ and }\,\,\,\,\,\, C_{W^-} = \frac{N^\mathrm {MC, rec-}_{W}}{N^\mathrm {MC, gen-, fid}_{W}}, \end{aligned}$$
(7)
where \(N^\mathrm {MC, rec+}_{W}\) and \(N^\mathrm {MC, rec-}_{W}\) are sums of event weights reconstructed as \(W^+\) or \(W^-\), respectively, regardless of the generated charge; similarly \(N^\mathrm {MC, gen+, fid}_{W}\) and \(N^\mathrm {MC, gen-, fid}_{W}\) are sums of events generated as \(W^+\) and \(W^-\), respectively, regardless of the reconstructed lepton charge. This charge misidentification effect is only relevant for the electron channels and negligible in the muon channels.

The correction of the differential distributions follows a similar methodology, but it is performed using the Bayesian Iterative method [85, 86], as implemented in the RooUnfold package [87] using three iterations. The differential distributions considered in this paper are constructed to have bin purities of typically more than 90%, where the bin purity is defined as the ratio of events generated and reconstructed in a certain bin to all events reconstructed in that bin. Slightly lower purities of 80–90% are observed in the \(Z/\gamma ^*\) analyses below the Z-peak region (\(m_{\ell \ell }=46\)\(66\,\,\text {GeV}\)) due to QED FSR effects and in the forward \(Z \rightarrow e^+e^-\) analysis due to worse experimental resolution. Because of the very high bin purities, the unfolding is to a large extent reduced to an efficiency correction. Residual prior uncertainties are covered by the variations of theoretical origin as discussed for the \(C_{W[Z]}\) factors above.

Fiducial cross sections in the electron and muon channels, as reported in Sects. 5.2.1 and 5.2.2, are then extrapolated to the common fiducial volume by applying a small correction \(E^{e(\mu )}_{W[Z]}\) as mentioned in Sect. 2.3:
$$\begin{aligned} \sigma ^\mathrm {fid}_{W \rightarrow \ell \nu [Z\rightarrow \ell \ell ]} = \frac{\sigma ^\mathrm {fid, e(\mu )}_{W \rightarrow e(\mu )\nu [Z\rightarrow ee(\mu \mu )]}}{E^{e(\mu )}_{W[Z]}}. \end{aligned}$$
(8)
These \(E^{e(\mu )}_{W[Z]}\) corrections account for the different \(\eta \) acceptances for electrons and muons in both the CC and NC analyses and are calculated from the nominal signal samples generated with Powheg+Pythia6. These correction factors are typically in the range of 0.90–0.95, but are as low as 0.65 in a few bins at high lepton pseudorapidity or dilepton rapidity. Uncertainties in these extrapolation factors account for PDF uncertainties as well as further signal modelling uncertainties obtained by comparing samples generated with Powheg+Herwig and MC@NLO. These uncertainties are found to be small, \({\sim } 0.1\%\), and are always well below the experimental precision of the measurements.
The total \(W^{\pm } \rightarrow \ell \nu \) and \(Z/\gamma ^* \rightarrow \ell \ell \) cross sections, times leptonic branching ratio, are calculated using the relation
$$\begin{aligned} \sigma ^\mathrm {tot}_{W \rightarrow \ell \nu [Z \rightarrow \ell \ell ]} = \frac{\sigma ^\mathrm {fid}_{W \rightarrow \ell \nu [Z \rightarrow \ell \ell ]}}{{A_{W[Z]}}}, \end{aligned}$$
(9)
where the acceptance \(A_{W[Z]}\) extrapolates the cross section for the \(W^+\), \(W^-\) and the \(Z/\gamma ^*\) channels, measured in the fiducial volume, \(\sigma ^\mathrm {fid}_{W \rightarrow \ell \nu [Z \rightarrow \ell \ell ]}\), to the full kinematic region. It is given by
$$\begin{aligned} {A_{W[Z]}}= \frac{N^\mathrm {MC, gen, fid}_{W[Z]}}{N^\mathrm {MC, gen, tot}_{W[Z]}}, \end{aligned}$$
(10)
where \(N^\mathrm {MC, gen, tot}_{W[Z]}\) is the total sum of weights of all generated MC events. Uncertainties in the acceptance from the theoretical uncertainties in the process modelling and in the PDFs are estimated as indicated above and amount to typically ±(1.5–2.0)%. This therefore significantly increases the uncertainty in the total cross sections with respect to the fiducial cross sections.

5.2 Cross-section measurements

5.2.1 Electron channels

To ensure an adequate description of important kinematic variables in the electron channels, Figs. 3, 4, 5, 6, 7, 8 and 9 compare several distributions of the data to the signal simulation and estimated backgrounds. The signal and electroweak background distributions are taken from the simulation and normalized to the corresponding data luminosity. The distributions of the background from multijet production are obtained from data and normalized as described in Sect. 3.3. Figures 3, 4, 5 and 6 show the distributions of the electron transverse momentum, the electron pseudorapidity, the missing transverse momentum, and the transverse mass of candidate W events, respectively. The invariant mass distribution of electron pairs, selected by the \(Z/\gamma ^* \rightarrow e^+e^-\) analyses, and the dilepton rapidity distributions are shown in Figs. 7, 8 and 9, respectively. Good agreement between data and the predictions is observed in general for all kinematic distributions. Small disagreements in the shapes of the \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) distributions of W-boson candidates are visible at the level of 2–10%. These deviations are covered by uncertainties on the multijet background and on the signal modelling, for the latter specifically the variations related to the hadronic recoil response and W-boson \(p_{\text {T}}\) spectrum. In the forward \(Z/\gamma ^* \rightarrow e^+e^-\) distributions, small disagreements at low \(m_{ee}\) and localised in particular \(y_{ee}\) bins of the high mass region \(m_{ee}=116\)\(150\,\text {GeV}\) are covered by the systematic uncertainties on the electron energy scale and resolution, and background yields, respectively.
Fig. 3

The transverse momentum distribution of electrons for \(W^+ \rightarrow e^+ \nu \) candidates (left) and \(W^- \rightarrow e^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 4

The pseudorapidity distribution of electrons for \(W^+ \rightarrow e^+ \nu \) candidates (left) and \(W^- \rightarrow e^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 5

The missing transverse momentum distribution for \(W^+ \rightarrow e^+ \nu \) candidates (left) and \(W^- \rightarrow e^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 6

The transverse mass distribution for \(W^+ \rightarrow e^+ \nu \) candidates (left) and \(W^- \rightarrow e^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 7

The dilepton invariant mass distributions for \(Z/\gamma ^* \rightarrow e^+e^-\) candidates with two central electrons (left) and one central and one forward electron (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 8

The dilepton rapidity distributions for \(Z/\gamma ^* \rightarrow e^+e^-\) candidates with two central electrons in the mass regions \(46< m_{ee}< 66\,\text {GeV}\) (left), \(66< m_{ee}< 116\,\text {GeV}\) (middle) and \(116< m_{ee}< 150\,\text {GeV}\) (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 9

The dilepton rapidity distributions for \(Z/\gamma ^* \rightarrow e^+e^-\) candidates with one central and one forward electron in the mass region \(66< m_{ee}< 116\,\text {GeV}\) (left) and \(116\,\text {GeV}< m_{ee}< 150\,\text {GeV}\) (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Table 1 summarizes the number of selected candidates, estimated background events and the \(C_{W[Z]}\) correction factors used for the four different integrated electron channel measurements: \(W^+\), \(W^-\), central \(Z/\gamma ^*\), and forward \(Z/\gamma ^*\) analyses, both \(Z/\gamma ^*\) analyses in the Z-peak region of \(66<m_{ee}<116\,\,\text {GeV}\). The corresponding four integrated cross sections in the fiducial phase space specific to the electron channels are reported in Table 2 with their uncertainties due to data statistics, luminosity, and further experimental systematic uncertainties.

The systematic uncertainties split into their different components are shown in Table 3. Apart from the luminosity contribution of \(1.8\)%, the \(W \rightarrow e \nu \) cross section is measured with an experimental uncertainty of 0.9% for the \(W^+\) channel and 1.1% for the \(W^-\) channel. The central \(Z/\gamma ^* \rightarrow e^+e^-\) cross section in the Z-peak region is measured with an uncertainty of 0.35%. The extended forward rapidity \(Z/\gamma ^* \rightarrow e^+e^-\) cross section is measured with an uncertainty of 2.3%.

The uncertainties of the data-driven determinations of the electron and hadronic recoil responses, discussed in Sect. 3.2, are propagated to the measurements. These comprise uncertainties in the electron detection efficiencies, separated into contributions from the trigger, reconstruction, identification, and isolation, which are relatively small for the \(W \rightarrow e \nu \) channel, about 0.2% in total, but constitute the dominant systematic uncertainties in the central Z data and amount to 0.25%. In the forward Z analysis the dominant systematic uncertainty, of about 1.5%, comes from the forward electron identification. The effects from charge misidentification only affect the \(W^{\pm } \rightarrow e \nu \) cross sections and are very small, \({<}0.1\%\). Both the central and forward electron \(p_{\text {T}}\) resolution and scale uncertainties are in general subdominant, amounting to about 0.2%. The \(W \rightarrow e \nu \) analyses are also affected by uncertainties in the hadronic recoil response, decomposed into soft \(E_{\text {T}}^{\text {miss}}\) and jet energy scale and resolution uncertainties, which add up to a total contribution of about 0.2%.

Signal modelling variations using different event generators, as discussed in Sect. 5.1, contribute significant uncertainties of 0.6–0.7% to the \(W \rightarrow e \nu \) analysis and 1.1% to the forward Z analysis, while the effect on the central Z analysis is smaller with 0.2%. This source of uncertainty comprises effects from the lepton efficiencies and, for the \(W \rightarrow e \nu \) analysis, effects from the multijet background determination, which relies on \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) shapes, and the hadronic recoil response. Other theoretical modelling uncertainties, due to PDFs and boson \(p_{\text {T}}\) effects, are at the level of 0.1–0.2%.

Uncertainties in the background subtraction are discussed in Sect. 3.3. The contribution from the electroweak and top-quark backgrounds is small and \({<}0.2\%\) for all channels. The multijet background to the \(W \rightarrow e \nu \) channel, however, represents one of the dominant uncertainties with 0.6–0.7%.
Table 1

Number of observed event candidates N, of estimated background events B, and the correction factors C for the \(W^+\), \(W^-\), central and forward \(Z/\gamma ^*\) (\(66< m_{ee}<116\,\text {GeV}\)) electron channels. The correction factors C were defined in Eq. (6). The charge asymmetry in the background to the \(W^{\pm }\) channels stems from the \(W \rightarrow \tau \nu \) contribution, which is proportional to the signal yield. The given uncertainties are the sum in quadrature of statistical and systematic components. The statistical uncertainties in C are negligible

 

N

B

C

\(W^+ \rightarrow e^+ \nu \)

7,552,884

\(515{,}000\pm 48{,}000\)

\(0.572\pm 0.004\)

\(W^- \rightarrow e^- \bar{\nu }\)

5,286,997

\(468{,}000\pm 40{,}000\)

\(0.586\pm 0.005\)

Central \(Z/\gamma ^* \rightarrow e^+e^-\)

1,011,940

\(4750\pm 350\)

\(0.500\pm 0.002\)

Forward \(Z/\gamma ^* \rightarrow e^+e^-\)

321,575

\(9170\pm 460\)

\(0.425\pm 0.010\)

Table 2

Fiducial cross sections times branching ratios for \(W^+\), \(W^-\), central and forward \(Z/\gamma ^*\) (\(66<m_{ee}<116\,\text {GeV}\)) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions in Sect. 2.3, except that the central electron pseudorapidity is restricted to be \(|\eta |<2.47\) and excludes \(1.37<|\eta |<1.52\), and the forward electron pseudorapidity excludes the region \(3.16<|\eta |<3.35\). The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties

 

\(\sigma ^\mathrm {fid,e}_{W \rightarrow e\nu }\) (pb)

\(W^+ \rightarrow e^+ \nu \)

\(~2726 \pm 1 \,\mathrm {(stat)} \pm 28 \,\mathrm {(syst)} \pm 49\,\mathrm {(lumi)} \)

\(W^- \rightarrow e^- \bar{\nu }\)

\(~1823 \pm 1 \,\mathrm {(stat)} \pm 21 \,\mathrm {(syst)} \pm 33\,\mathrm {(lumi)}\)

 

\(\sigma ^\mathrm {fid,e}_{Z/\gamma ^* \rightarrow ee}\) (pb)

Central \(Z/\gamma ^* \rightarrow e^+e^-\)

\(439.5 \pm 0.4 \,\mathrm {(stat)} \pm 1.5 \,\mathrm {(syst)} \pm 7.9 \,\mathrm {(lumi)}\)

Forward \(Z/\gamma ^* \rightarrow e^+e^-\)

\(160.2 \pm 0.3 \,\mathrm {(stat)} \pm 3.7 \,\mathrm {(syst)} \pm 2.9 \,\mathrm {(lumi)}\)

Table 3

Relative uncertainties \(\delta \sigma \) in the measured integrated fiducial cross sections times branching ratios of \(W^+\), \(W^-\), central and forward \(Z/\gamma ^*\) (\(66< m_{ee}<116\,\text {GeV}\)) in the electron channels

 

\(\delta \sigma _{W+}\) (%)

\(\delta \sigma _{W-}\) (%)

\(\delta \sigma _{Z}\) (%)

\(\delta \sigma _{\mathrm {forward}\,Z}\) (%)

Trigger efficiency

0.03

0.03

0.05

0.05

Reconstruction efficiency

0.12

0.12

0.20

0.13

Identification efficiency

0.09

0.09

0.16

0.12

Forward identification efficiency

\(\mathrm {-}\)

\(\mathrm {-}\)

\(\mathrm {-}\)

1.51

Isolation efficiency

0.03

0.03

\(\mathrm {-}\)

0.04

Charge misidentification

0.04

0.06

\(\mathrm {-}\)

\(\mathrm {-}\)

Electron \(p_{\text {T}}\) resolution

0.02

0.03

0.01

0.01

Electron \(p_{\text {T}}\) scale

0.22

0.18

0.08

0.12

Forward electron \(p_{\text {T}}\) scale + resolution

\(\mathrm {-}\)

\(\mathrm {-}\)

\(\mathrm {-}\)

0.18

\(E_{\text {T}}^{\text {miss}}\) soft term scale

0.14

0.13

\(\mathrm {-}\)

\(\mathrm {-}\)

\(E_{\text {T}}^{\text {miss}}\) soft term resolution

0.06

0.04

\(\mathrm {-}\)

\(\mathrm {-}\)

Jet energy scale

0.04

0.02

\(\mathrm {-}\)

\(\mathrm {-}\)

Jet energy resolution

0.11

0.15

\(\mathrm {-}\)

\(\mathrm {-}\)

Signal modelling (matrix-element generator)

0.57

0.64

0.03

1.12

Signal modelling (parton shower and hadronization)

0.24

0.25

0.18

1.25

PDF

0.10

0.12

0.09

0.06

Boson \(p_{\text {T}}\)

0.22

0.19

0.01

0.04

Multijet background

0.55

0.72

0.03

0.05

Electroweak+top background

0.17

0.19

0.02

0.14

Background statistical uncertainty

0.02

0.03

<0.01

0.04

Unfolding statistical uncertainty

0.03

0.04

0.04

0.13

Data statistical uncertainty

0.04

0.05

0.10

0.18

Total experimental uncertainty

0.94

1.08

0.35

2.29

Luminosity

1.8

1.8

1.8

1.8

The differential cross-section measurements as a function of the \(W^{\pm }\) electron pseudorapidity and the dielectron rapidity and mass for the \(Z/\gamma ^*\) channel are summarized in the Appendix in the Tables 23, 24, 25 and 26. The statistical uncertainties in the \(W \rightarrow e \nu \) differential cross sections are about 0.1–0.2%, and the total uncertainties are in the range of 0.9–2.2%, excluding the luminosity uncertainty.

The differential \(Z/\gamma ^* \rightarrow e^+e^-\) cross sections in the central region are measured in the \(m_{ee}=66\)\(116\,\text {GeV}\) invariant mass region with a statistical uncertainty of about 0.3–0.5% up to \(|y_{\ell \ell }|=2.0\) and of 0.9% for \(|y_{\ell \ell }| = 2.0\)–2.4. The total uncertainty, excluding the luminosity uncertainty, is 0.5–0.7% up to \(|y_{\ell \ell }|=2.0\) and \(1.4\%\) for \(|y_{\ell \ell }|= 2.0\)–2.4. The statistical uncertainties of the differential \(Z/\gamma ^* \rightarrow e^+e^-\) cross sections measured in the regions \(m_{ee}=46\)\(66\,\,\text {GeV}\) and 116–\(150\,\text {GeV}\) are in the range 1.5–5%, dominating the total uncertainties of 2–6%.

The uncertainties in the forward \(Z/\gamma ^* \rightarrow e^+e^-\) differential cross sections are dominated by systematic uncertainties. At the Z peak, the total uncertainty is 3–8%, while in the high-mass region it is about 10–20%.

5.2.2 Muon channels

The description of important kinematic variables in the muon-channel data by the signal simulation and the estimated backgrounds is illustrated in Figs. 10, 11, 12, 13, 14 and 15. The signal and electroweak background distributions are taken from MC simulation and normalized to the corresponding data luminosity. The distributions for the background from multijet production are obtained from data and normalized as described in Sect. 4.3. Figures 10, 11 and 12 show the distributions of muon transverse momentum, muon pseudorapidity and the missing transverse momentum of candidate W events for positive and negative charges. The transverse mass distributions are shown in Fig. 13. The dimuon mass distribution of muon pairs selected by the \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) analysis are shown in Fig. 14, while Fig. 15 shows the dimuon rapidity distributions for the three invariant mass regions. The level of agreement between data and simulation is good in all cases. Small disagreements in the shapes of the \(E_{\text {T}}^{\text {miss}}\) and \(m_\mathrm {T}\) distributions of W-boson candidates are visible in a similar way as in the electron channel and are covered by the systematic uncertainties.
Fig. 10

The transverse momentum distribution of muons for \(W^+ \rightarrow \mu ^+ \nu \) candidates (left) and \(W^- \rightarrow \mu ^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 11

The pseudorapidity distribution of muons for \(W^+ \rightarrow \mu ^+ \nu \) candidates (left) and \(W^- \rightarrow \mu ^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 12

The missing transverse momentum distribution for \(W^+ \rightarrow \mu ^+ \nu \) candidates (left) and \(W^- \rightarrow \mu ^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 13

The transverse mass distribution for \(W^+ \rightarrow \mu ^+ \nu \) candidates (left) and \(W^- \rightarrow \mu ^- \bar{\nu }\) candidates (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 14

The dilepton invariant mass distributions for \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) candidates. The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Fig. 15

The dilepton rapidity distributions for \(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\) candidates in the mass regions \(46< m_{\mu \mu }< 66\,\text {GeV}\) (left), \(66< m_{\mu \mu }< 116\,\text {GeV}\) (middle) and \(116< m_{\mu \mu }< 150\,\text {GeV}\) (right). The simulated samples are normalized to the data luminosity. The multijet background shape is taken from a data control sample and normalized to the estimated yield of multijet events. The sum of all expected background and signal contributions is shown as a solid line with a hashed band detailing the statistical uncertainty and labelled “total (stat)”. The legend lists only background sources with a visible contribution

Table 4 reports the number of candidates, the estimated background events and the \(C_{W[Z]}\) correction factors used for the three different integrated muon channel measurements of the \(W^+\), \(W^-\), and \(Z/\gamma ^*\) cross sections, the latter in the Z-peak region of \(66<m_{\mu \mu }<116\,\,\text {GeV}\). The corresponding three integrated cross sections in the fiducial phase space specific to the muon channels are reported in Table 5 with their uncertainties due to data statistics, luminosity, and further experimental systematic uncertainties.
Table 4

Number of observed candidates N, of expected background events B, and the correction factors C for the \(W^+\), \(W^-\), and \(Z/\gamma ^*\) (\(66<m_{\mu \mu }<116\,\,\text {GeV}\)) muon channels. The correction factors C were defined in Eq. (6). The charge asymmetry in the background to the \(W^{\pm }\) channels stems from the \(W \rightarrow \tau \nu \) contributions, which is proportional to the signal yield. The uncertainties are the quadratic sum of statistical and systematic components. The statistical uncertainties in C are negligible

 

N

B

C

\(W^+ \rightarrow \mu ^+ \nu \)

9,225,887

\(683{,}000 \pm 32{,}000\)

\(0.656 \pm 0.003\)

\(W^- \rightarrow \mu ^- \bar{\nu }\)

6,260,198

\(598{,}000 \pm 20{,}000\)

\(0.649 \pm 0.003\)

\(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\)

1,612,440

\(6600 \pm 1200\)

\(0.734 \pm 0.003\)

Table 5

Fiducial cross sections times branching ratios for \(W^+\), \(W^-\), and \(Z/\gamma ^*\) (\(66<m_{\mu \mu }<116\,\,\text {GeV}\)) production in the muon decay channel. The fiducial regions used for the measurement are those defined for the combined fiducial regions in Sect. 2.3, except that the muon pseudorapidity is restricted to be within \(|\eta |<2.4\). The uncertainties denote the statistical (stat), the systematic (syst), and the luminosity (lumi) uncertainties

 

\(\sigma ^\mathrm {fid,\mu }_{W \rightarrow \mu \nu }\) (pb)

\(W^+ \rightarrow \mu ^+ \nu \)

\(~ 2839 \pm 1\,\mathrm {(stat)} \pm 17\,\mathrm {(syst)} \pm 51\,\mathrm {(lumi)} \)

\(W^- \rightarrow \mu ^- \bar{\nu }\)

\(~ 1901 \pm 1\,\mathrm {(stat)} \pm 11\,\mathrm {(syst)} \pm 34\,\mathrm {(lumi)} \)

 

\(\sigma ^\mathrm {fid,\mu }_{Z/\gamma ^* \rightarrow \mu \mu }\) (pb)

\(Z/\gamma ^* \rightarrow \mu ^+\mu ^-\)