Advertisement

Measurement of prompt and nonprompt \(\mathrm{J}/{\psi }\) production in \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) collisions at \(\sqrt{s_{\mathrm {NN}}} =5.02\,\text {TeV} \)

  • A. M. Sirunyan
  • A. Tumasyan
  • W. Adam
  • E. Asilar
  • T. Bergauer
  • J. Brandstetter
  • E. Brondolin
  • M. Dragicevic
  • J. Erö
  • M. Flechl
  • M. Friedl
  • R. Frühwirth
  • V. M. Ghete
  • C. Hartl
  • N. Hörmann
  • J. Hrubec
  • M. Jeitler
  • A. König
  • I. Krätschmer
  • D. Liko
  • T. Matsushita
  • I. Mikulec
  • D. Rabady
  • N. Rad
  • B. Rahbaran
  • H. Rohringer
  • J. Schieck
  • J. Strauss
  • W. Waltenberger
  • C.-E. Wulz
  • O. Dvornikov
  • V. Makarenko
  • V. Mossolov
  • J. Suarez Gonzalez
  • V. Zykunov
  • N. Shumeiko
  • S. Alderweireldt
  • E. A. De Wolf
  • X. Janssen
  • J. Lauwers
  • M. Van De Klundert
  • H. Van Haevermaet
  • P. Van Mechelen
  • N. Van Remortel
  • A. Van Spilbeeck
  • S. Abu Zeid
  • F. Blekman
  • J. D’Hondt
  • N. Daci
  • I. De Bruyn
  • K. Deroover
  • S. Lowette
  • S. Moortgat
  • L. Moreels
  • A. Olbrechts
  • Q. Python
  • K. Skovpen
  • S. Tavernier
  • W. Van Doninck
  • P. Van Mulders
  • I. Van Parijs
  • H. Brun
  • B. Clerbaux
  • G. De Lentdecker
  • H. Delannoy
  • G. Fasanella
  • L. Favart
  • R. Goldouzian
  • A. Grebenyuk
  • G. Karapostoli
  • T. Lenzi
  • A. Léonard
  • J. Luetic
  • T. Maerschalk
  • A. Marinov
  • A. Randle-conde
  • T. Seva
  • C. Vander Velde
  • P. Vanlaer
  • D. Vannerom
  • R. Yonamine
  • F. Zenoni
  • F. Zhang
  • A. Cimmino
  • T. Cornelis
  • D. Dobur
  • A. Fagot
  • M. Gul
  • I. Khvastunov
  • D. Poyraz
  • S. Salva
  • R. Schöfbeck
  • M. Tytgat
  • W. Van Driessche
  • E. Yazgan
  • N. Zaganidis
  • H. Bakhshiansohi
  • C. Beluffi
  • O. Bondu
  • S. Brochet
  • G. Bruno
  • A. Caudron
  • S. De Visscher
  • C. Delaere
  • M. Delcourt
  • B. Francois
  • A. Giammanco
  • A. Jafari
  • M. Komm
  • G. Krintiras
  • V. Lemaitre
  • A. Magitteri
  • A. Mertens
  • M. Musich
  • K. Piotrzkowski
  • L. Quertenmont
  • M. Selvaggi
  • M. Vidal Marono
  • S. Wertz
  • N. Beliy
  • W. L. Aldá Júnior
  • F. L. Alves
  • G. A. Alves
  • L. Brito
  • C. Hensel
  • A. Moraes
  • M. E. Pol
  • P. Rebello Teles
  • E. Belchior Batista Das Chagas
  • W. Carvalho
  • J. Chinellato
  • A. Custódio
  • E. M. Da Costa
  • G. G. Da Silveira
  • D. De Jesus Damiao
  • C. De Oliveira Martins
  • S. Fonseca De Souza
  • L. M. Huertas Guativa
  • H. Malbouisson
  • D. Matos Figueiredo
  • C. Mora Herrera
  • L. Mundim
  • H. Nogima
  • W. L. Prado Da Silva
  • A. Santoro
  • A. Sznajder
  • E. J. Tonelli Manganote
  • F. Torres Da Silva De Araujo
  • A. Vilela Pereira
  • S. Ahuja
  • C. A. Bernardes
  • S. Dogra
  • T. R. Fernandez Perez Tomei
  • E. M. Gregores
  • P. G. Mercadante
  • C. S. Moon
  • S. F. Novaes
  • Sandra S. Padula
  • D. Romero Abad
  • J. C. Ruiz Vargas
  • A. Aleksandrov
  • R. Hadjiiska
  • P. Iaydjiev
  • M. Rodozov
  • S. Stoykova
  • G. Sultanov
  • M. Vutova
  • A. Dimitrov
  • I. Glushkov
  • L. Litov
  • B. Pavlov
  • P. Petkov
  • W. Fang
  • M. Ahmad
  • J. G. Bian
  • G. M. Chen
  • H. S. Chen
  • M. Chen
  • Y. Chen
  • T. Cheng
  • C. H. Jiang
  • D. Leggat
  • Z. Liu
  • F. Romeo
  • M. Ruan
  • S. M. Shaheen
  • A. Spiezia
  • J. Tao
  • C. Wang
  • Z. Wang
  • H. Zhang
  • J. Zhao
  • Y. Ban
  • G. Chen
  • Q. Li
  • S. Liu
  • Y. Mao
  • S. J. Qian
  • D. Wang
  • Z. Xu
  • C. Avila
  • A. Cabrera
  • L. F. Chaparro Sierra
  • C. Florez
  • J. P. Gomez
  • C. F. González Hernández
  • J. D. Ruiz Alvarez
  • J. C. Sanabria
  • N. Godinovic
  • D. Lelas
  • I. Puljak
  • P. M. Ribeiro Cipriano
  • T. Sculac
  • Z. Antunovic
  • M. Kovac
  • V. Brigljevic
  • D. Ferencek
  • K. Kadija
  • B. Mesic
  • T. Susa
  • A. Attikis
  • G. Mavromanolakis
  • J. Mousa
  • C. Nicolaou
  • F. Ptochos
  • P. A. Razis
  • H. Rykaczewski
  • D. Tsiakkouri
  • M. Finger
  • M. FingerJr.
  • E. Carrera Jarrin
  • Y. Assran
  • T. Elkafrawy
  • A. Mahrous
  • M. Kadastik
  • L. Perrini
  • M. Raidal
  • A. Tiko
  • C. Veelken
  • P. Eerola
  • J. Pekkanen
  • M. Voutilainen
  • J. Härkönen
  • T. Järvinen
  • V. Karimäki
  • R. Kinnunen
  • T. Lampén
  • K. Lassila-Perini
  • S. Lehti
  • T. Lindén
  • P. Luukka
  • J. Tuominiemi
  • E. Tuovinen
  • L. Wendland
  • J. Talvitie
  • T. Tuuva
  • M. Besancon
  • F. Couderc
  • M. Dejardin
  • D. Denegri
  • B. Fabbro
  • J. L. Faure
  • C. Favaro
  • F. Ferri
  • S. Ganjour
  • S. Ghosh
  • A. Givernaud
  • P. Gras
  • G. Hamel de Monchenault
  • P. Jarry
  • I. Kucher
  • E. Locci
  • M. Machet
  • J. Malcles
  • J. Rander
  • A. Rosowsky
  • M. Titov
  • A. Abdulsalam
  • I. Antropov
  • F. Arleo
  • S. Baffioni
  • F. Beaudette
  • P. Busson
  • L. Cadamuro
  • E. Chapon
  • C. Charlot
  • O. Davignon
  • R. Granier de Cassagnac
  • M. Jo
  • S. Lisniak
  • P. Miné
  • M. Nguyen
  • C. Ochando
  • G. Ortona
  • P. Paganini
  • P. Pigard
  • S. Regnard
  • R. Salerno
  • Y. Sirois
  • T. Strebler
  • Y. Yilmaz
  • A. Zabi
  • A. Zghiche
  • J.-L. Agram
  • J. Andrea
  • A. Aubin
  • D. Bloch
  • J.-M. Brom
  • M. Buttignol
  • E. C. Chabert
  • N. Chanon
  • C. Collard
  • E. Conte
  • X. Coubez
  • J.-C. Fontaine
  • D. Gelé
  • U. Goerlach
  • A.-C. Le Bihan
  • P. Van Hove
  • S. Gadrat
  • S. Beauceron
  • C. Bernet
  • G. Boudoul
  • C. A. Carrillo Montoya
  • R. Chierici
  • D. Contardo
  • B. Courbon
  • P. Depasse
  • H. El Mamouni
  • J. Fay
  • S. Gascon
  • M. Gouzevitch
  • G. Grenier
  • B. Ille
  • F. Lagarde
  • I. B. Laktineh
  • M. Lethuillier
  • L. Mirabito
  • A. L. Pequegnot
  • S. Perries
  • A. Popov
  • D. Sabes
  • V. Sordini
  • M. Vander Donckt
  • P. Verdier
  • S. Viret
  • A. Khvedelidze
  • Z. Tsamalaidze
  • C. Autermann
  • S. Beranek
  • L. Feld
  • M. K. Kiesel
  • K. Klein
  • M. Lipinski
  • M. Preuten
  • C. Schomakers
  • J. Schulz
  • T. Verlage
  • A. Albert
  • M. Brodski
  • E. Dietz-Laursonn
  • D. Duchardt
  • M. Endres
  • M. Erdmann
  • S. Erdweg
  • T. Esch
  • R. Fischer
  • A. Güth
  • M. Hamer
  • T. Hebbeker
  • C. Heidemann
  • K. Hoepfner
  • S. Knutzen
  • M. Merschmeyer
  • A. Meyer
  • P. Millet
  • S. Mukherjee
  • M. Olschewski
  • K. Padeken
  • T. Pook
  • M. Radziej
  • H. Reithler
  • M. Rieger
  • F. Scheuch
  • L. Sonnenschein
  • D. Teyssier
  • S. Thüer
  • V. Cherepanov
  • G. Flügge
  • B. Kargoll
  • T. Kress
  • A. Künsken
  • J. Lingemann
  • T. Müller
  • A. Nehrkorn
  • A. Nowack
  • C. Pistone
  • O. Pooth
  • A. Stahl
  • M. Aldaya Martin
  • T. Arndt
  • C. Asawatangtrakuldee
  • K. Beernaert
  • O. Behnke
  • U. Behrens
  • A. A. Bin Anuar
  • K. Borras
  • A. Campbell
  • P. Connor
  • C. Contreras-Campana
  • F. Costanza
  • C. Diez Pardos
  • G. Dolinska
  • G. Eckerlin
  • D. Eckstein
  • T. Eichhorn
  • E. Eren
  • E. Gallo
  • J. Garay Garcia
  • A. Geiser
  • A. Gizhko
  • J. M. Grados Luyando
  • A. Grohsjean
  • P. Gunnellini
  • A. Harb
  • J. Hauk
  • M. Hempel
  • H. Jung
  • A. Kalogeropoulos
  • O. Karacheban
  • M. Kasemann
  • J. Keaveney
  • C. Kleinwort
  • I. Korol
  • D. Krücker
  • W. Lange
  • A. Lelek
  • T. Lenz
  • J. Leonard
  • K. Lipka
  • A. Lobanov
  • W. Lohmann
  • R. Mankel
  • I.-A. Melzer-Pellmann
  • A. B. Meyer
  • G. Mittag
  • J. Mnich
  • A. Mussgiller
  • D. Pitzl
  • R. Placakyte
  • A. Raspereza
  • B. Roland
  • M. Ö. Sahin
  • P. Saxena
  • T. Schoerner-Sadenius
  • S. Spannagel
  • N. Stefaniuk
  • G. P. Van Onsem
  • R. Walsh
  • C. Wissing
  • V. Blobel
  • M. Centis Vignali
  • A. R. Draeger
  • T. Dreyer
  • E. Garutti
  • D. Gonzalez
  • J. Haller
  • M. Hoffmann
  • A. Junkes
  • R. Klanner
  • R. Kogler
  • N. Kovalchuk
  • T. Lapsien
  • I. Marchesini
  • D. Marconi
  • M. Meyer
  • M. Niedziela
  • D. Nowatschin
  • F. Pantaleo
  • T. Peiffer
  • A. Perieanu
  • J. Poehlsen
  • C. Scharf
  • P. Schleper
  • A. Schmidt
  • S. Schumann
  • J. Schwandt
  • H. Stadie
  • G. Steinbrück
  • F. M. Stober
  • M. Stöver
  • H. Tholen
  • D. Troendle
  • E. Usai
  • L. Vanelderen
  • A. Vanhoefer
  • B. Vormwald
  • M. Akbiyik
  • C. Barth
  • S. Baur
  • C. Baus
  • J. Berger
  • E. Butz
  • R. Caspart
  • T. Chwalek
  • F. Colombo
  • W. De Boer
  • A. Dierlamm
  • S. Fink
  • B. Freund
  • R. Friese
  • M. Giffels
  • A. Gilbert
  • P. Goldenzweig
  • D. Haitz
  • F. Hartmann
  • S. M. Heindl
  • U. Husemann
  • I. Katkov
  • S. Kudella
  • H. Mildner
  • M. U. Mozer
  • Th. Müller
  • M. Plagge
  • G. Quast
  • K. Rabbertz
  • S. Röcker
  • F. Roscher
  • M. Schröder
  • I. Shvetsov
  • G. Sieber
  • H. J. Simonis
  • R. Ulrich
  • S. Wayand
  • M. Weber
  • T. Weiler
  • S. Williamson
  • C. Wöhrmann
  • R. Wolf
  • G. Anagnostou
  • G. Daskalakis
  • T. Geralis
  • V. A. Giakoumopoulou
  • A. Kyriakis
  • D. Loukas
  • I. Topsis-Giotis
  • S. Kesisoglou
  • A. Panagiotou
  • N. Saoulidou
  • E. Tziaferi
  • I. Evangelou
  • G. Flouris
  • C. Foudas
  • P. Kokkas
  • N. Loukas
  • N. Manthos
  • I. Papadopoulos
  • E. Paradas
  • N. Filipovic
  • G. Pasztor
  • G. Bencze
  • C. Hajdu
  • D. Horvath
  • F. Sikler
  • V. Veszpremi
  • G. Vesztergombi
  • A. J. Zsigmond
  • N. Beni
  • S. Czellar
  • J. Karancsi
  • A. Makovec
  • J. Molnar
  • Z. Szillasi
  • M. Bartók
  • P. Raics
  • Z. L. Trocsanyi
  • B. Ujvari
  • J. R. Komaragiri
  • S. Bahinipati
  • S. Bhowmik
  • S. Choudhury
  • P. Mal
  • K. Mandal
  • A. Nayak
  • D. K. Sahoo
  • N. Sahoo
  • S. K. Swain
  • S. Bansal
  • S. B. Beri
  • V. Bhatnagar
  • R. Chawla
  • U. Bhawandeep
  • A. K. Kalsi
  • A. Kaur
  • M. Kaur
  • R. Kumar
  • P. Kumari
  • A. Mehta
  • M. Mittal
  • J. B. Singh
  • G. Walia
  • Ashok Kumar
  • A. Bhardwaj
  • B. C. Choudhary
  • R. B. Garg
  • S. Keshri
  • S. Malhotra
  • M. Naimuddin
  • K. Ranjan
  • R. Sharma
  • V. Sharma
  • R. Bhattacharya
  • S. Bhattacharya
  • K. Chatterjee
  • S. Dey
  • S. Dutt
  • S. Dutta
  • S. Ghosh
  • N. Majumdar
  • A. Modak
  • K. Mondal
  • S. Mukhopadhyay
  • S. Nandan
  • A. Purohit
  • A. Roy
  • D. Roy
  • S. Roy Chowdhury
  • S. Sarkar
  • M. Sharan
  • S. Thakur
  • P. K. Behera
  • R. Chudasama
  • D. Dutta
  • V. Jha
  • V. Kumar
  • A. K. Mohanty
  • P. K. Netrakanti
  • L. M. Pant
  • P. Shukla
  • A. Topkar
  • T. Aziz
  • S. Dugad
  • G. Kole
  • B. Mahakud
  • S. Mitra
  • G. B. Mohanty
  • B. Parida
  • N. Sur
  • B. Sutar
  • S. Banerjee
  • R. K. Dewanjee
  • S. Ganguly
  • M. Guchait
  • Sa. Jain
  • S. Kumar
  • M. Maity
  • G. Majumder
  • K. Mazumdar
  • T. Sarkar
  • N. Wickramage
  • S. Chauhan
  • S. Dube
  • V. Hegde
  • A. Kapoor
  • K. Kothekar
  • S. Pandey
  • A. Rane
  • S. Sharma
  • S. Chenarani
  • E. Eskandari Tadavani
  • S. M. Etesami
  • M. Khakzad
  • M. Mohammadi Najafabadi
  • M. Naseri
  • S. Paktinat Mehdiabadi
  • F. Rezaei Hosseinabadi
  • B. Safarzadeh
  • M. Zeinali
  • M. Felcini
  • M. Grunewald
  • M. Abbrescia
  • C. Calabria
  • C. Caputo
  • A. Colaleo
  • D. Creanza
  • L. Cristella
  • N. De Filippis
  • M. De Palma
  • L. Fiore
  • G. Iaselli
  • G. Maggi
  • M. Maggi
  • G. Miniello
  • S. My
  • S. Nuzzo
  • A. Pompili
  • G. Pugliese
  • R. Radogna
  • A. Ranieri
  • G. Selvaggi
  • A. Sharma
  • L. Silvestris
  • R. Venditti
  • P. Verwilligen
  • G. Abbiendi
  • C. Battilana
  • D. Bonacorsi
  • S. Braibant-Giacomelli
  • L. Brigliadori
  • R. Campanini
  • P. Capiluppi
  • A. Castro
  • F. R. Cavallo
  • S. S. Chhibra
  • G. Codispoti
  • M. Cuffiani
  • G. M. Dallavalle
  • F. Fabbri
  • A. Fanfani
  • D. Fasanella
  • P. Giacomelli
  • C. Grandi
  • L. Guiducci
  • S. Marcellini
  • G. Masetti
  • A. Montanari
  • F. L. Navarria
  • A. Perrotta
  • A. M. Rossi
  • T. Rovelli
  • G. P. Siroli
  • N. Tosi
  • S. Albergo
  • S. Costa
  • A. Di Mattia
  • F. Giordano
  • R. Potenza
  • A. Tricomi
  • C. Tuve
  • G. Barbagli
  • V. Ciulli
  • C. Civinini
  • R. D’Alessandro
  • E. Focardi
  • P. Lenzi
  • M. Meschini
  • S. Paoletti
  • L. Russo
  • G. Sguazzoni
  • D. Strom
  • L. Viliani
  • L. Benussi
  • S. Bianco
  • F. Fabbri
  • D. Piccolo
  • F. Primavera
  • V. Calvelli
  • F. Ferro
  • M. R. Monge
  • E. Robutti
  • S. Tosi
  • L. Brianza
  • F. Brivio
  • V. Ciriolo
  • M. E. Dinardo
  • S. Fiorendi
  • S. Gennai
  • A. Ghezzi
  • P. Govoni
  • M. Malberti
  • S. Malvezzi
  • R. A. Manzoni
  • D. Menasce
  • L. Moroni
  • M. Paganoni
  • D. Pedrini
  • S. Pigazzini
  • S. Ragazzi
  • T. Tabarelli de Fatis
  • S. Buontempo
  • N. Cavallo
  • G. De Nardo
  • S. Di Guida
  • M. Esposito
  • F. Fabozzi
  • F. Fienga
  • A. O. M. Iorio
  • G. Lanza
  • L. Lista
  • S. Meola
  • P. Paolucci
  • C. Sciacca
  • F. Thyssen
  • P. Azzi
  • N. Bacchetta
  • L. Benato
  • A. Boletti
  • R. Carlin
  • P. Checchia
  • M. Dall’Osso
  • P. De Castro Manzano
  • T. Dorigo
  • U. Dosselli
  • F. Gasparini
  • U. Gasparini
  • A. Gozzelino
  • S. Lacaprara
  • M. Margoni
  • A. T. Meneguzzo
  • J. Pazzini
  • M. Pegoraro
  • N. Pozzobon
  • P. Ronchese
  • M. Sgaravatto
  • F. Simonetto
  • E. Torassa
  • S. Ventura
  • M. Zanetti
  • P. Zotto
  • A. Braghieri
  • F. Fallavollita
  • A. Magnani
  • P. Montagna
  • S. P. Ratti
  • V. Re
  • C. Riccardi
  • P. Salvini
  • I. Vai
  • P. Vitulo
  • L. Alunni Solestizi
  • G. M. Bilei
  • D. Ciangottini
  • L. Fanò
  • P. Lariccia
  • R. Leonardi
  • G. Mantovani
  • M. Menichelli
  • A. Saha
  • A. Santocchia
  • K. Androsov
  • P. Azzurri
  • G. Bagliesi
  • J. Bernardini
  • T. Boccali
  • R. Castaldi
  • M. A. Ciocci
  • R. Dell’Orso
  • S. Donato
  • G. Fedi
  • A. Giassi
  • M. T. Grippo
  • F. Ligabue
  • T. Lomtadze
  • L. Martini
  • A. Messineo
  • F. Palla
  • A. Rizzi
  • A. Savoy-Navarro
  • P. Spagnolo
  • R. Tenchini
  • G. Tonelli
  • A. Venturi
  • P. G. Verdini
  • L. Barone
  • F. Cavallari
  • M. Cipriani
  • D. Del Re
  • M. Diemoz
  • S. Gelli
  • E. Longo
  • F. Margaroli
  • B. Marzocchi
  • P. Meridiani
  • G. Organtini
  • R. Paramatti
  • F. Preiato
  • S. Rahatlou
  • C. Rovelli
  • F. Santanastasio
  • N. Amapane
  • R. Arcidiacono
  • S. Argiro
  • M. Arneodo
  • N. Bartosik
  • R. Bellan
  • C. Biino
  • N. Cartiglia
  • F. Cenna
  • M. Costa
  • R. Covarelli
  • A. Degano
  • N. Demaria
  • L. Finco
  • B. Kiani
  • C. Mariotti
  • S. Maselli
  • E. Migliore
  • V. Monaco
  • E. Monteil
  • M. Monteno
  • M. M. Obertino
  • L. Pacher
  • N. Pastrone
  • M. Pelliccioni
  • G. L. Pinna Angioni
  • F. Ravera
  • A. Romero
  • M. Ruspa
  • R. Sacchi
  • K. Shchelina
  • V. Sola
  • A. Solano
  • A. Staiano
  • P. Traczyk
  • S. Belforte
  • M. Casarsa
  • F. Cossutti
  • G. Della Ricca
  • A. Zanetti
  • D. H. Kim
  • G. N. Kim
  • M. S. Kim
  • S. Lee
  • S. W. Lee
  • Y. D. Oh
  • S. Sekmen
  • D. C. Son
  • Y. C. Yang
  • A. Lee
  • H. Kim
  • J. A. Brochero Cifuentes
  • T. J. Kim
  • S. Cho
  • S. Choi
  • Y. Go
  • D. Gyun
  • S. Ha
  • B. Hong
  • Y. Jo
  • Y. Kim
  • K. Lee
  • K. S. Lee
  • S. Lee
  • J. Lim
  • S. K. Park
  • Y. Roh
  • J. Almond
  • J. Kim
  • H. Lee
  • S. B. Oh
  • B. C. Radburn-Smith
  • S. H. Seo
  • U. K. Yang
  • H. D. Yoo
  • G. B. Yu
  • M. Choi
  • H. Kim
  • J. H. Kim
  • J. S. H. Lee
  • I. C. Park
  • G. Ryu
  • M. S. Ryu
  • Y. Choi
  • J. Goh
  • C. Hwang
  • J. Lee
  • I. Yu
  • V. Dudenas
  • A. Juodagalvis
  • J. Vaitkus
  • I. Ahmed
  • Z. A. Ibrahim
  • M. A. B. Md Ali
  • F. Mohamad Idris
  • W. A. T. Wan Abdullah
  • M. N. Yusli
  • Z. Zolkapli
  • H. Castilla-Valdez
  • E. De La Cruz-Burelo
  • I. Heredia-De La Cruz
  • A. Hernandez-Almada
  • R. Lopez-Fernandez
  • R. Magaña Villalba
  • J. Mejia Guisao
  • A. Sanchez-Hernandez
  • S. Carrillo Moreno
  • C. Oropeza Barrera
  • F. Vazquez Valencia
  • S. Carpinteyro
  • I. Pedraza
  • H. A. Salazar Ibarguen
  • C. Uribe Estrada
  • A. Morelos Pineda
  • D. Krofcheck
  • P. H. Butler
  • A. Ahmad
  • M. Ahmad
  • Q. Hassan
  • H. R. Hoorani
  • W. A. Khan
  • A. Saddique
  • M. A. Shah
  • M. Shoaib
  • M. Waqas
  • H. Bialkowska
  • M. Bluj
  • B. Boimska
  • T. Frueboes
  • M. Górski
  • M. Kazana
  • K. Nawrocki
  • K. Romanowska-Rybinska
  • M. Szleper
  • P. Zalewski
  • K. Bunkowski
  • A. Byszuk
  • K. Doroba
  • A. Kalinowski
  • M. Konecki
  • J. Krolikowski
  • M. Misiura
  • M. Olszewski
  • M. Walczak
  • P. Bargassa
  • C. Beirão Da Cruz E Silva
  • B. Calpas
  • A. Di Francesco
  • P. Faccioli
  • P. G. Ferreira Parracho
  • M. Gallinaro
  • J. Hollar
  • N. Leonardo
  • L. Lloret Iglesias
  • M. V. Nemallapudi
  • J. Rodrigues Antunes
  • J. Seixas
  • O. Toldaiev
  • D. Vadruccio
  • J. Varela
  • P. Vischia
  • S. Afanasiev
  • P. Bunin
  • M. Gavrilenko
  • I. Golutvin
  • I. Gorbunov
  • A. Kamenev
  • V. Karjavin
  • A. Lanev
  • A. Malakhov
  • V. Matveev
  • V. Palichik
  • V. Perelygin
  • S. Shmatov
  • S. Shulha
  • N. Skatchkov
  • V. Smirnov
  • N. Voytishin
  • A. Zarubin
  • L. Chtchipounov
  • V. Golovtsov
  • Y. Ivanov
  • V. Kim
  • E. Kuznetsova
  • V. Murzin
  • V. Oreshkin
  • V. Sulimov
  • A. Vorobyev
  • Yu. Andreev
  • A. Dermenev
  • S. Gninenko
  • N. Golubev
  • A. Karneyeu
  • M. Kirsanov
  • N. Krasnikov
  • A. Pashenkov
  • D. Tlisov
  • A. Toropin
  • V. Epshteyn
  • V. Gavrilov
  • N. Lychkovskaya
  • V. Popov
  • I. Pozdnyakov
  • G. Safronov
  • A. Spiridonov
  • M. Toms
  • E. Vlasov
  • A. Zhokin
  • T. Aushev
  • A. Bylinkin
  • M. Chadeeva
  • R. Chistov
  • S. Polikarpov
  • V. Andreev
  • M. Azarkin
  • I. Dremin
  • M. Kirakosyan
  • A. Leonidov
  • A. Terkulov
  • A. Baskakov
  • A. Belyaev
  • E. Boos
  • A. Ershov
  • A. Gribushin
  • A. Kaminskiy
  • O. Kodolova
  • V. Korotkikh
  • I. Lokhtin
  • I. Miagkov
  • S. Obraztsov
  • S. Petrushanko
  • V. Savrin
  • A. Snigirev
  • I. Vardanyan
  • V. Blinov
  • Y. Skovpen
  • D. Shtol
  • I. Azhgirey
  • I. Bayshev
  • S. Bitioukov
  • D. Elumakhov
  • V. Kachanov
  • A. Kalinin
  • D. Konstantinov
  • V. Krychkine
  • V. Petrov
  • R. Ryutin
  • A. Sobol
  • S. Troshin
  • N. Tyurin
  • A. Uzunian
  • A. Volkov
  • P. Adzic
  • P. Cirkovic
  • D. Devetak
  • M. Dordevic
  • J. Milosevic
  • V. Rekovic
  • J. Alcaraz Maestre
  • M. Barrio Luna
  • E. Calvo
  • M. Cerrada
  • M. Chamizo Llatas
  • N. Colino
  • B. De La Cruz
  • A. Delgado Peris
  • A. Escalante Del Valle
  • C. Fernandez Bedoya
  • J. P. Fernández Ramos
  • J. Flix
  • M. C. Fouz
  • P. Garcia-Abia
  • O. Gonzalez Lopez
  • S. Goy Lopez
  • J. M. Hernandez
  • M. I. Josa
  • E. Navarro De Martino
  • A. Pérez-Calero Yzquierdo
  • J. Puerta Pelayo
  • A. Quintario Olmeda
  • I. Redondo
  • L. Romero
  • M. S. Soares
  • J. F. de Trocóniz
  • M. Missiroli
  • D. Moran
  • J. Cuevas
  • J. Fernandez Menendez
  • I. Gonzalez Caballero
  • J. R. González Fernández
  • E. Palencia Cortezon
  • S. Sanchez Cruz
  • I. Suárez Andrés
  • J. M. Vizan Garcia
  • I. J. Cabrillo
  • A. Calderon
  • E. Curras
  • M. Fernandez
  • J. Garcia-Ferrero
  • G. Gomez
  • A. Lopez Virto
  • J. Marco
  • C. Martinez Rivero
  • F. Matorras
  • J. Piedra Gomez
  • T. Rodrigo
  • A. Ruiz-Jimeno
  • L. Scodellaro
  • N. Trevisani
  • I. Vila
  • R. Vilar Cortabitarte
  • D. Abbaneo
  • E. Auffray
  • G. Auzinger
  • P. Baillon
  • A. H. Ball
  • D. Barney
  • P. Bloch
  • A. Bocci
  • C. Botta
  • T. Camporesi
  • R. Castello
  • M. Cepeda
  • G. Cerminara
  • Y. Chen
  • D. d’Enterria
  • A. Dabrowski
  • V. Daponte
  • A. David
  • M. De Gruttola
  • A. De Roeck
  • E. Di Marco
  • M. Dobson
  • B. Dorney
  • T. du Pree
  • D. Duggan
  • M. Dünser
  • N. Dupont
  • A. Elliott-Peisert
  • P. Everaerts
  • S. Fartoukh
  • G. Franzoni
  • J. Fulcher
  • W. Funk
  • D. Gigi
  • K. Gill
  • M. Girone
  • F. Glege
  • D. Gulhan
  • S. Gundacker
  • M. Guthoff
  • P. Harris
  • J. Hegeman
  • V. Innocente
  • P. Janot
  • J. Kieseler
  • H. Kirschenmann
  • V. Knünz
  • A. Kornmayer
  • M. J. Kortelainen
  • K. Kousouris
  • M. Krammer
  • C. Lange
  • P. Lecoq
  • C. Lourenço
  • M. T. Lucchini
  • L. Malgeri
  • M. Mannelli
  • A. Martelli
  • F. Meijers
  • J. A. Merlin
  • S. Mersi
  • E. Meschi
  • P. Milenovic
  • F. Moortgat
  • S. Morovic
  • M. Mulders
  • H. Neugebauer
  • S. Orfanelli
  • L. Orsini
  • L. Pape
  • E. Perez
  • M. Peruzzi
  • A. Petrilli
  • G. Petrucciani
  • A. Pfeiffer
  • M. Pierini
  • A. Racz
  • T. Reis
  • G. Rolandi
  • M. Rovere
  • H. Sakulin
  • J. B. Sauvan
  • C. Schäfer
  • C. Schwick
  • M. Seidel
  • A. Sharma
  • P. Silva
  • P. Sphicas
  • J. Steggemann
  • M. Stoye
  • Y. Takahashi
  • M. Tosi
  • D. Treille
  • A. Triossi
  • A. Tsirou
  • V. Veckalns
  • G. I. Veres
  • M. Verweij
  • N. Wardle
  • H. K. Wöhri
  • A. Zagozdzinska
  • W. D. Zeuner
  • W. Bertl
  • K. Deiters
  • W. Erdmann
  • R. Horisberger
  • Q. Ingram
  • H. C. Kaestli
  • D. Kotlinski
  • U. Langenegger
  • T. Rohe
  • S. A. Wiederkehr
  • F. Bachmair
  • L. Bäni
  • L. Bianchini
  • B. Casal
  • G. Dissertori
  • M. Dittmar
  • M. Donegà
  • C. Grab
  • C. Heidegger
  • D. Hits
  • J. Hoss
  • G. Kasieczka
  • W. Lustermann
  • B. Mangano
  • M. Marionneau
  • P. Martinez Ruiz del Arbol
  • M. Masciovecchio
  • M. T. Meinhard
  • D. Meister
  • F. Micheli
  • P. Musella
  • F. Nessi-Tedaldi
  • F. Pandolfi
  • J. Pata
  • F. Pauss
  • G. Perrin
  • L. Perrozzi
  • M. Quittnat
  • M. Rossini
  • M. Schönenberger
  • A. Starodumov
  • V. R. Tavolaro
  • K. Theofilatos
  • R. Wallny
  • T. K. Aarrestad
  • C. Amsler
  • L. Caminada
  • M. F. Canelli
  • A. De Cosa
  • C. Galloni
  • A. Hinzmann
  • T. Hreus
  • B. Kilminster
  • J. Ngadiuba
  • D. Pinna
  • G. Rauco
  • P. Robmann
  • D. Salerno
  • C. Seitz
  • Y. Yang
  • A. Zucchetta
  • V. Candelise
  • T. H. Doan
  • Sh. Jain
  • R. Khurana
  • M. Konyushikhin
  • C. M. Kuo
  • W. Lin
  • A. Pozdnyakov
  • S. S. Yu
  • Arun Kumar
  • P. Chang
  • Y. H. Chang
  • Y. Chao
  • K. F. Chen
  • P. H. Chen
  • F. Fiori
  • W.-S. Hou
  • Y. Hsiung
  • Y. F. Liu
  • R.-S. Lu
  • M. Miñano Moya
  • E. Paganis
  • A. Psallidas
  • J. F. Tsai
  • B. Asavapibhop
  • G. Singh
  • N. Srimanobhas
  • N. Suwonjandee
  • A. Adiguzel
  • S. Cerci
  • S. Damarseckin
  • Z. S. Demiroglu
  • C. Dozen
  • I. Dumanoglu
  • S. Girgis
  • G. Gokbulut
  • Y. Guler
  • I. Hos
  • E. E. Kangal
  • O. Kara
  • A. Kayis Topaksu
  • U. Kiminsu
  • M. Oglakci
  • G. Onengut
  • K. Ozdemir
  • D. Sunar Cerci
  • H. Topakli
  • S. Turkcapar
  • I. S. Zorbakir
  • C. Zorbilmez
  • B. Bilin
  • S. Bilmis
  • B. Isildak
  • G. Karapinar
  • M. Yalvac
  • M. Zeyrek
  • E. Gülmez
  • M. Kaya
  • O. Kaya
  • E. A. Yetkin
  • T. Yetkin
  • A. Cakir
  • K. Cankocak
  • S. Sen
  • B. Grynyov
  • L. Levchuk
  • P. Sorokin
  • R. Aggleton
  • F. Ball
  • L. Beck
  • J. J. Brooke
  • D. Burns
  • E. Clement
  • D. Cussans
  • H. Flacher
  • J. Goldstein
  • M. Grimes
  • G. P. Heath
  • H. F. Heath
  • J. Jacob
  • L. Kreczko
  • C. Lucas
  • D. M. Newbold
  • S. Paramesvaran
  • A. Poll
  • T. Sakuma
  • S. Seif El Nasr-storey
  • D. Smith
  • V. J. Smith
  • A. Belyaev
  • C. Brew
  • R. M. Brown
  • L. Calligaris
  • D. Cieri
  • D. J. A. Cockerill
  • J. A. Coughlan
  • K. Harder
  • S. Harper
  • E. Olaiya
  • D. Petyt
  • C. H. Shepherd-Themistocleous
  • A. Thea
  • I. R. Tomalin
  • T. Williams
  • M. Baber
  • R. Bainbridge
  • O. Buchmuller
  • A. Bundock
  • D. Burton
  • S. Casasso
  • M. Citron
  • D. Colling
  • L. Corpe
  • P. Dauncey
  • G. Davies
  • A. De Wit
  • M. Della Negra
  • R. Di Maria
  • P. Dunne
  • A. Elwood
  • D. Futyan
  • Y. Haddad
  • G. Hall
  • G. Iles
  • T. James
  • R. Lane
  • C. Laner
  • R. Lucas
  • L. Lyons
  • A.-M. Magnan
  • S. Malik
  • L. Mastrolorenzo
  • J. Nash
  • A. Nikitenko
  • J. Pela
  • B. Penning
  • M. Pesaresi
  • D. M. Raymond
  • A. Richards
  • A. Rose
  • E. Scott
  • C. Seez
  • S. Summers
  • A. Tapper
  • K. Uchida
  • M. Vazquez Acosta
  • T. Virdee
  • J. Wright
  • S. C. Zenz
  • J. E. Cole
  • P. R. Hobson
  • A. Khan
  • P. Kyberd
  • I. D. Reid
  • P. Symonds
  • L. Teodorescu
  • M. Turner
  • A. Borzou
  • K. Call
  • J. Dittmann
  • K. Hatakeyama
  • H. Liu
  • N. Pastika
  • R. Bartek
  • A. Dominguez
  • A. Buccilli
  • S. I. Cooper
  • C. Henderson
  • P. Rumerio
  • C. West
  • D. Arcaro
  • A. Avetisyan
  • T. Bose
  • D. Gastler
  • D. Rankin
  • C. Richardson
  • J. Rohlf
  • L. Sulak
  • D. Zou
  • G. Benelli
  • D. Cutts
  • A. Garabedian
  • J. Hakala
  • U. Heintz
  • J. M. Hogan
  • O. Jesus
  • K. H. M. Kwok
  • E. Laird
  • G. Landsberg
  • Z. Mao
  • M. Narain
  • S. Piperov
  • S. Sagir
  • E. Spencer
  • R. Syarif
  • R. Breedon
  • D. Burns
  • M. Calderon De La Barca Sanchez
  • S. Chauhan
  • M. Chertok
  • J. Conway
  • R. Conway
  • P. T. Cox
  • R. Erbacher
  • C. Flores
  • G. Funk
  • M. Gardner
  • W. Ko
  • R. Lander
  • C. Mclean
  • M. Mulhearn
  • D. Pellett
  • J. Pilot
  • S. Shalhout
  • M. Shi
  • J. Smith
  • M. Squires
  • D. Stolp
  • K. Tos
  • M. Tripathi
  • M. Bachtis
  • C. Bravo
  • R. Cousins
  • A. Dasgupta
  • A. Florent
  • J. Hauser
  • M. Ignatenko
  • N. Mccoll
  • D. Saltzberg
  • C. Schnaible
  • V. Valuev
  • M. Weber
  • E. Bouvier
  • K. Burt
  • R. Clare
  • J. Ellison
  • J. W. Gary
  • S. M. A. Ghiasi Shirazi
  • G. Hanson
  • J. Heilman
  • P. Jandir
  • E. Kennedy
  • F. Lacroix
  • O. R. Long
  • M. Olmedo Negrete
  • M. I. Paneva
  • A. Shrinivas
  • W. Si
  • H. Wei
  • S. Wimpenny
  • B. R. Yates
  • J. G. Branson
  • G. B. Cerati
  • S. Cittolin
  • M. Derdzinski
  • R. Gerosa
  • A. Holzner
  • D. Klein
  • V. Krutelyov
  • J. Letts
  • I. Macneill
  • D. Olivito
  • S. Padhi
  • M. Pieri
  • M. Sani
  • V. Sharma
  • S. Simon
  • M. Tadel
  • A. Vartak
  • S. Wasserbaech
  • C. Welke
  • J. Wood
  • F. Würthwein
  • A. Yagil
  • G. Zevi Della Porta
  • N. Amin
  • R. Bhandari
  • J. Bradmiller-Feld
  • C. Campagnari
  • A. Dishaw
  • V. Dutta
  • M. Franco Sevilla
  • C. George
  • F. Golf
  • L. Gouskos
  • J. Gran
  • R. Heller
  • J. Incandela
  • S. D. Mullin
  • A. Ovcharova
  • H. Qu
  • J. Richman
  • D. Stuart
  • I. Suarez
  • J. Yoo
  • D. Anderson
  • J. Bendavid
  • A. Bornheim
  • J. Bunn
  • J. Duarte
  • J. M. Lawhorn
  • A. Mott
  • H. B. Newman
  • C. Pena
  • M. Spiropulu
  • J. R. Vlimant
  • S. Xie
  • R. Y. Zhu
  • M. B. Andrews
  • T. Ferguson
  • M. Paulini
  • J. Russ
  • M. Sun
  • H. Vogel
  • I. Vorobiev
  • M. Weinberg
  • J. P. Cumalat
  • W. T. Ford
  • F. Jensen
  • A. Johnson
  • M. Krohn
  • S. Leontsinis
  • T. Mulholland
  • K. Stenson
  • S. R. Wagner
  • J. Alexander
  • J. Chaves
  • J. Chu
  • S. Dittmer
  • K. Mcdermott
  • N. Mirman
  • G. Nicolas Kaufman
  • J. R. Patterson
  • A. Rinkevicius
  • A. Ryd
  • L. Skinnari
  • L. Soffi
  • S. M. Tan
  • Z. Tao
  • J. Thom
  • J. Tucker
  • P. Wittich
  • M. Zientek
  • D. Winn
  • S. Abdullin
  • M. Albrow
  • G. Apollinari
  • A. Apresyan
  • S. Banerjee
  • L. A. T. Bauerdick
  • A. Beretvas
  • J. Berryhill
  • P. C. Bhat
  • G. Bolla
  • K. Burkett
  • J. N. Butler
  • H. W. K. Cheung
  • F. Chlebana
  • S. Cihangir
  • M. Cremonesi
  • V. D. Elvira
  • I. Fisk
  • J. Freeman
  • E. Gottschalk
  • L. Gray
  • D. Green
  • S. Grünendahl
  • O. Gutsche
  • D. Hare
  • R. M. Harris
  • S. Hasegawa
  • J. Hirschauer
  • Z. Hu
  • B. Jayatilaka
  • S. Jindariani
  • M. Johnson
  • U. Joshi
  • B. Klima
  • B. Kreis
  • S. Lammel
  • J. Linacre
  • D. Lincoln
  • R. Lipton
  • M. Liu
  • T. Liu
  • R. Lopes De Sá
  • J. Lykken
  • K. Maeshima
  • N. Magini
  • J. M. Marraffino
  • S. Maruyama
  • D. Mason
  • P. McBride
  • P. Merkel
  • S. Mrenna
  • S. Nahn
  • V. O’Dell
  • K. Pedro
  • O. Prokofyev
  • G. Rakness
  • L. Ristori
  • E. Sexton-Kennedy
  • A. Soha
  • W. J. Spalding
  • L. Spiegel
  • S. Stoynev
  • J. Strait
  • N. Strobbe
  • L. Taylor
  • S. Tkaczyk
  • N. V. Tran
  • L. Uplegger
  • E. W. Vaandering
  • C. Vernieri
  • M. Verzocchi
  • R. Vidal
  • M. Wang
  • H. A. Weber
  • A. Whitbeck
  • Y. Wu
  • D. Acosta
  • P. Avery
  • P. Bortignon
  • D. Bourilkov
  • A. Brinkerhoff
  • A. Carnes
  • M. Carver
  • D. Curry
  • S. Das
  • R. D. Field
  • I. K. Furic
  • J. Konigsberg
  • A. Korytov
  • J. F. Low
  • P. Ma
  • K. Matchev
  • H. Mei
  • G. Mitselmakher
  • D. Rank
  • L. Shchutska
  • D. Sperka
  • L. Thomas
  • J. Wang
  • S. Wang
  • J. Yelton
  • S. Linn
  • P. Markowitz
  • G. Martinez
  • J. L. Rodriguez
  • A. Ackert
  • T. Adams
  • A. Askew
  • S. Bein
  • S. Hagopian
  • V. Hagopian
  • K. F. Johnson
  • H. Prosper
  • A. Santra
  • R. Yohay
  • M. M. Baarmand
  • V. Bhopatkar
  • S. Colafranceschi
  • M. Hohlmann
  • D. Noonan
  • T. Roy
  • F. Yumiceva
  • M. R. Adams
  • L. Apanasevich
  • D. Berry
  • R. R. Betts
  • I. Bucinskaite
  • R. Cavanaugh
  • O. Evdokimov
  • L. Gauthier
  • C. E. Gerber
  • D. J. Hofman
  • K. Jung
  • I. D. Sandoval Gonzalez
  • N. Varelas
  • H. Wang
  • Z. Wu
  • M. Zakaria
  • J. Zhang
  • B. Bilki
  • W. Clarida
  • K. Dilsiz
  • S. Durgut
  • R. P. Gandrajula
  • M. Haytmyradov
  • V. Khristenko
  • J.-P. Merlo
  • H. Mermerkaya
  • A. Mestvirishvili
  • A. Moeller
  • J. Nachtman
  • H. Ogul
  • Y. Onel
  • F. Ozok
  • A. Penzo
  • C. Snyder
  • E. Tiras
  • J. Wetzel
  • K. Yi
  • I. Anderson
  • B. Blumenfeld
  • A. Cocoros
  • N. Eminizer
  • D. Fehling
  • L. Feng
  • A. V. Gritsan
  • P. Maksimovic
  • J. Roskes
  • U. Sarica
  • M. Swartz
  • M. Xiao
  • Y. Xin
  • C. You
  • A. Al-bataineh
  • P. Baringer
  • A. Bean
  • S. Boren
  • J. Bowen
  • J. Castle
  • L. Forthomme
  • R. P. KennyIII
  • S. Khalil
  • A. Kropivnitskaya
  • D. Majumder
  • W. Mcbrayer
  • M. Murray
  • S. Sanders
  • R. Stringer
  • J. D. Tapia Takaki
  • Q. Wang
  • A. Ivanov
  • K. Kaadze
  • Y. Maravin
  • A. Mohammadi
  • L. K. Saini
  • N. Skhirtladze
  • S. Toda
  • F. Rebassoo
  • D. Wright
  • C. Anelli
  • A. Baden
  • O. Baron
  • A. Belloni
  • B. Calvert
  • S. C. Eno
  • C. Ferraioli
  • J. A. Gomez
  • N. J. Hadley
  • S. Jabeen
  • G. Y. Jeng
  • R. G. Kellogg
  • T. Kolberg
  • J. Kunkle
  • A. C. Mignerey
  • F. Ricci-Tam
  • Y. H. Shin
  • A. Skuja
  • M. B. Tonjes
  • S. C. Tonwar
  • D. Abercrombie
  • B. Allen
  • A. Apyan
  • V. Azzolini
  • R. Barbieri
  • A. Baty
  • R. Bi
  • K. Bierwagen
  • S. Brandt
  • W. Busza
  • I. A. Cali
  • M. D’Alfonso
  • Z. Demiragli
  • L. Di Matteo
  • G. Gomez Ceballos
  • M. Goncharov
  • D. Hsu
  • Y. Iiyama
  • G. M. Innocenti
  • M. Klute
  • D. Kovalskyi
  • K. Krajczar
  • Y. S. Lai
  • Y.-J. Lee
  • A. Levin
  • P. D. Luckey
  • B. Maier
  • A. C. Marini
  • C. Mcginn
  • C. Mironov
  • S. Narayanan
  • X. Niu
  • C. Paus
  • C. Roland
  • G. Roland
  • J. Salfeld-Nebgen
  • G. S. F. Stephans
  • K. Tatar
  • M. Varma
  • D. Velicanu
  • J. Veverka
  • J. Wang
  • T. W. Wang
  • B. Wyslouch
  • M. Yang
  • A. C. Benvenuti
  • R. M. Chatterjee
  • A. Evans
  • P. Hansen
  • S. Kalafut
  • S. C. Kao
  • Y. Kubota
  • Z. Lesko
  • J. Mans
  • S. Nourbakhsh
  • N. Ruckstuhl
  • R. Rusack
  • N. Tambe
  • J. Turkewitz
  • J. G. Acosta
  • S. Oliveros
  • E. Avdeeva
  • K. Bloom
  • D. R. Claes
  • C. Fangmeier
  • R. Gonzalez Suarez
  • R. Kamalieddin
  • I. Kravchenko
  • A. Malta Rodrigues
  • J. Monroy
  • J. E. Siado
  • G. R. Snow
  • B. Stieger
  • M. Alyari
  • J. Dolen
  • A. Godshalk
  • C. Harrington
  • I. Iashvili
  • J. Kaisen
  • D. Nguyen
  • A. Parker
  • S. Rappoccio
  • B. Roozbahani
  • G. Alverson
  • E. Barberis
  • A. Hortiangtham
  • A. Massironi
  • D. M. Morse
  • D. Nash
  • T. Orimoto
  • R. Teixeira De Lima
  • D. Trocino
  • R.-J. Wang
  • D. Wood
  • S. Bhattacharya
  • O. Charaf
  • K. A. Hahn
  • A. Kumar
  • N. Mucia
  • N. Odell
  • B. Pollack
  • M. H. Schmitt
  • K. Sung
  • M. Trovato
  • M. Velasco
  • N. Dev
  • M. Hildreth
  • K. Hurtado Anampa
  • C. Jessop
  • D. J. Karmgard
  • N. Kellams
  • K. Lannon
  • N. Marinelli
  • F. Meng
  • C. Mueller
  • Y. Musienko
  • M. Planer
  • A. Reinsvold
  • R. Ruchti
  • N. Rupprecht
  • G. Smith
  • S. Taroni
  • M. Wayne
  • M. Wolf
  • A. Woodard
  • J. Alimena
  • L. Antonelli
  • B. Bylsma
  • L. S. Durkin
  • S. Flowers
  • B. Francis
  • A. Hart
  • C. Hill
  • R. Hughes
  • W. Ji
  • B. Liu
  • W. Luo
  • D. Puigh
  • B. L. Winer
  • H. W. Wulsin
  • S. Cooperstein
  • O. Driga
  • P. Elmer
  • J. Hardenbrook
  • P. Hebda
  • D. Lange
  • J. Luo
  • D. Marlow
  • T. Medvedeva
  • K. Mei
  • I. Ojalvo
  • J. Olsen
  • C. Palmer
  • P. Piroué
  • D. Stickland
  • A. Svyatkovskiy
  • C. Tully
  • S. Malik
  • A. Barker
  • V. E. Barnes
  • S. Folgueras
  • L. Gutay
  • M. K. Jha
  • M. Jones
  • A. W. Jung
  • A. Khatiwada
  • D. H. Miller
  • N. Neumeister
  • J. F. Schulte
  • X. Shi
  • J. Sun
  • F. Wang
  • W. Xie
  • N. Parashar
  • J. Stupak
  • A. Adair
  • B. Akgun
  • Z. Chen
  • K. M. Ecklund
  • F. J. M. Geurts
  • M. Guilbaud
  • W. Li
  • B. Michlin
  • M. Northup
  • B. P. Padley
  • J. Roberts
  • J. Rorie
  • Z. Tu
  • J. Zabel
  • B. Betchart
  • A. Bodek
  • P. de Barbaro
  • R. Demina
  • Y. T. Duh
  • T. Ferbel
  • M. Galanti
  • A. Garcia-Bellido
  • J. Han
  • O. Hindrichs
  • A. Khukhunaishvili
  • K. H. Lo
  • P. Tan
  • M. Verzetti
  • A. Agapitos
  • J. P. Chou
  • Y. Gershtein
  • T. A. Gómez Espinosa
  • E. Halkiadakis
  • M. Heindl
  • E. Hughes
  • S. Kaplan
  • R. Kunnawalkam Elayavalli
  • S. Kyriacou
  • A. Lath
  • K. Nash
  • M. Osherson
  • H. Saka
  • S. Salur
  • S. Schnetzer
  • D. Sheffield
  • S. Somalwar
  • R. Stone
  • S. Thomas
  • P. Thomassen
  • M. Walker
  • A. G. Delannoy
  • M. Foerster
  • J. Heideman
  • G. Riley
  • K. Rose
  • S. Spanier
  • K. Thapa
  • O. Bouhali
  • A. Celik
  • M. Dalchenko
  • M. De Mattia
  • A. Delgado
  • S. Dildick
  • R. Eusebi
  • J. Gilmore
  • T. Huang
  • E. Juska
  • T. Kamon
  • R. Mueller
  • Y. Pakhotin
  • R. Patel
  • A. Perloff
  • L. Perniè
  • D. Rathjens
  • A. Safonov
  • A. Tatarinov
  • K. A. Ulmer
  • N. Akchurin
  • C. Cowden
  • J. Damgov
  • F. De Guio
  • C. Dragoiu
  • P. R. Dudero
  • J. Faulkner
  • E. Gurpinar
  • S. Kunori
  • K. Lamichhane
  • S. W. Lee
  • T. Libeiro
  • T. Peltola
  • S. Undleeb
  • I. Volobouev
  • Z. Wang
  • S. Greene
  • A. Gurrola
  • R. Janjam
  • W. Johns
  • C. Maguire
  • A. Melo
  • H. Ni
  • P. Sheldon
  • S. Tuo
  • J. Velkovska
  • Q. Xu
  • M. W. Arenton
  • P. Barria
  • B. Cox
  • J. Goodell
  • R. Hirosky
  • A. Ledovskoy
  • H. Li
  • C. Neu
  • T. Sinthuprasith
  • X. Sun
  • Y. Wang
  • E. Wolfe
  • F. Xia
  • C. Clarke
  • R. Harr
  • P. E. Karchin
  • J. Sturdy
  • D. A. Belknap
  • J. Buchanan
  • C. Caillol
  • S. Dasu
  • L. Dodd
  • S. Duric
  • B. Gomber
  • M. Grothe
  • M. Herndon
  • A. Hervé
  • P. Klabbers
  • A. Lanaro
  • A. Levine
  • K. Long
  • R. Loveless
  • T. Perry
  • G. A. Pierro
  • G. Polese
  • T. Ruggles
  • A. Savin
  • N. Smith
  • W. H. Smith
  • D. Taylor
  • N. Woods
  • CMS Collaboration
Open Access
Regular Article - Experimental Physics

Abstract

This paper reports the measurement of \(\mathrm{J}/{\psi }\) meson production in proton–proton (\(\mathrm {p}\mathrm {p}\)) and proton–lead (\(\mathrm {p}\mathrm {Pb}\)) collisions at a center-of-mass energy per nucleon pair of \(5.02\,\text {TeV} \) by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28\(\,\text {pb}^{-1}\) and 35\(\,\text {nb}^{-1}\) for \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) collisions, respectively. Prompt and nonprompt \(\mathrm{J}/{\psi }\) mesons, the latter produced in the decay of \({\mathrm {B}}\) hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of \(2<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \), and center-of-mass rapidity ranges of \(|y_\mathrm{{CM}} |<2.4\) (\(\mathrm {p}\mathrm {p}\)) and \(-2.87<y_\mathrm{{CM}}<1.93\) (\(\mathrm {p}\mathrm {Pb}\)). The nuclear modification factor, \(R_{\mathrm {p}\mathrm {Pb}}\), is measured as a function of both \(p_{\mathrm {T}}\) and \(y_\mathrm{{CM}}\). Small modifications to the \(\mathrm{J}/{\psi }\) cross sections are observed in \(\mathrm {p}\mathrm {Pb}\) relative to \(\mathrm {p}\mathrm {p}\) collisions. The ratio of \(\mathrm{J}/{\psi }\) production cross sections in \(\mathrm {p}\)-going and Pb-going directions, \(R_\mathrm{{FB}}\), studied as functions of \(p_{\mathrm {T}}\) and \(y_\mathrm{{CM}}\), shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt \(\mathrm{J}/{\psi }\) production.

1 Introduction

It was suggested 3 decades ago that quark-gluon plasma (QGP) formation would suppress the yield of \(\mathrm{J}/{\psi }\) mesons in high-energy heavy ion collisions, relative to that in proton–proton (\(\mathrm {p}\mathrm {p}\)) collisions, as a consequence of Debye screening of the heavy-quark potential at finite temperature [1]. This QGP signature triggered intense research activity, both experimental and theoretical, on the topic of heavy quarkonium production in nuclear collisions. Experiments at SPS [2, 3], RHIC [4, 5], and the CERN LHC [6, 7] have reported a significant \(\mathrm{J}/{\psi }\) suppression in heavy ion collisions compared to the expectation based on \(\mathrm {p}\mathrm {p}\) data. This suppression is found to be larger for more central collisions over a wide range in rapidity (y) and transverse momentum (\(p_{\mathrm {T}}\)). In addition, a suppression of different bottomonium states \([{\varUpsilon \mathrm{(1S)}},\,{\varUpsilon \mathrm{(2S)}},\,{\varUpsilon \mathrm{(3S)}}]\) has been observed at the LHC in lead–lead (\(\mathrm {PbPb}\)) collisions at a center-of-mass energy per nucleon pair of \(\sqrt{s_{\mathrm {NN}}} =2.76\,\text {TeV} \) [8, 9, 10], which appears to be consistent with the suggested picture of quarkonium suppression in the QGP [11, 12].

In order to interpret these results unambiguously, it is necessary to constrain the so-called cold nuclear matter effects on quarkonium production, through, e.g., baseline measurements in \(\mathrm {p}\mathrm {Pb}\) collisions. Among these effects, parton distribution functions in nuclei (nPDF) are known to differ from those in a free proton and thus influence the quarkonium yields in nuclear collisions. The expected depletion of nuclear gluon density at small values of the momentum fraction (x), an effect known as shadowing, would suppress \(\mathrm{J}/{\psi }\) production at forward y, corresponding to the \(\mathrm {p}\)-going direction in \(\mathrm {p}\mathrm {Pb}\) collisions [13, 14]. It has been also suggested that gluon radiation induced by parton multiple scattering in the nucleus can lead to \(p_{\mathrm {T}}\) broadening and coherent energy loss, resulting in a significant forward \(\mathrm{J}/{\psi }\) suppression in \(\mathrm {p}\mathrm {Pb}\) collisions at all available energies [15, 16]. These phenomena can be quantified by the nuclear modification factor, \(R_{\mathrm {p}\mathrm {Pb}}\), defined as the ratio of \(\mathrm{J}/{\psi }\) cross sections in \(\mathrm {p}\mathrm {Pb}\) collisions over those in \(\mathrm {p}\mathrm {p}\) collisions scaled by the number of nucleons in the \(\mathrm {Pb}\) ion (\(\mathrm {A}=208\)), and by the \(R_{\mathrm {FB}}\) ratio of \(\mathrm{J}/{\psi }\) cross sections at forward (\(\mathrm {p}\)-going direction) over those at backward (\(\mathrm {Pb}\)-going direction) rapidities.

In addition to prompt \(\mathrm{J}/{\psi }\) mesons, directly produced in the primary interaction or from the decay of heavier charmonium states such as \(\mathrm {\psi (2S)}\) and \(\chi _\text {c}\), the production of \(\mathrm{J}/{\psi }\) mesons includes a nonprompt contribution coming from the later decay of \({\mathrm {B}}\) hadrons, whose production rates are also expected to be affected by cold nuclear matter effects [17, 18]. However, neither high-\(p_{\mathrm {T}}\) \({\mathrm {B}}\) mesons nor b quark jets show clear evidence of their cross sections being modified in \(\mathrm {p}\mathrm {Pb}\) collisions [19, 20]. In this respect, the nonprompt component of \(\mathrm{J}/{\psi }\) production can shed light on the nature of nuclear effects (if any) on bottom-quark production at low \(p_{\mathrm {T}}\).

At the LHC, \(\mathrm{J}/{\psi }\) meson production in \(\mathrm {p}\mathrm {Pb}\) collisions at \(\sqrt{s_{\mathrm {NN}}} =5.02\,\text {TeV} \) has been measured by the ALICE [21, 22], ATLAS [23], and LHCb [24] collaborations. The \(R_{\mathrm {FB}}\) ratio has been determined as functions of rapidity in the center-of-mass frame, \(y_{\mathrm {CM}}\), and \(p_{\mathrm {T}}\). Using an interpolation of the \(\mathrm {p}\mathrm {p}\) production cross sections at the same collision energy, \(R_{\mathrm {p}\mathrm {Pb}}\) has also been estimated in Refs. [21, 22, 24] as functions of \(y_{\mathrm {CM}}\) and \(p_{\mathrm {T}}\). A significant suppression of the prompt \(\mathrm{J}/{\psi }\) production in \(\mathrm {p}\mathrm {Pb}\) collisions has been observed at forward \(y_{\mathrm {CM}}\) and low \(p_{\mathrm {T}}\), while no strong nuclear effects are observed at backward \(y_{\mathrm {CM}}\).

This paper reports an analysis of \(\mathrm{J}/{\psi }\) production in \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) collisions at \(\sqrt{s_{\mathrm {NN}}} =5.02\,\text {TeV} \), using data collected with the CMS detector in 2013 (\(\mathrm {p}\mathrm {Pb}\)) and in 2015 (\(\mathrm {p}\mathrm {p}\)). The \(\mathrm{J}/{\psi }\) mesons with \(2<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \) are measured via their dimuon decay channels in ranges of \(|y_{\mathrm {CM}} |<2.4\) in \(\mathrm {p}\mathrm {p}\) and \(-2.87<y_{\mathrm {CM}} <1.93\) in \(\mathrm {p}\mathrm {Pb}\) collisions. The corresponding values of x range from \(10^{-4}\), at forward \(y_{\mathrm {CM}}\) and low \(p_{\mathrm {T}}\), to \(10^{-2}\), at backward \(y_{\mathrm {CM}}\) and higher \(p_{\mathrm {T}}\). Both \(R_{\mathrm {p}\mathrm {Pb}}\) and \(R_{\mathrm {FB}}\) are measured as functions of \(y_{\mathrm {CM}}\) and \(p_{\mathrm {T}}\). The latter ratio is also studied as a function of the event activity in \(\mathrm {p}\mathrm {Pb}\) collisions, as characterized by the transverse energy deposited in the CMS detector at large pseudorapidities.

2 Experimental setup and event selection

The main feature of the CMS detector is a superconducting solenoid with an internal diameter of 6 m, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass and scintillator hadronic calorimeter. The silicon pixel and strip tracker measures charged particle trajectories in the pseudorapidity range of \(|\eta |<2.5\). It consists of 66 M pixel and 10 M strip sensor elements. Muons are detected in the range of \(|\eta |<2.4\), with detection planes based on three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The CMS apparatus also has extensive forward calorimetry, including two steel and quartz-fiber Cherenkov hadron forward (HF) calorimeters, which cover \(2.9<|\eta |<5.2\). These detectors are used for online event selection and the impact parameter characterization of the events in \(\mathrm {p}\mathrm {Pb}\) collisions, where the term impact parameter refers to the transverse distance between the two centers of the colliding hadrons. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [25].

The \(\mathrm {p}\mathrm {Pb}\) data set used in this analysis corresponds to an integrated luminosity of 34.6\(\,\text {nb}^{-1}\). The beam energies are 4\(\,\text {TeV}\) for \(\mathrm {p}\), and 1.58\(\,\text {TeV}\) per nucleon for the \(\mathrm {Pb}\) nuclei, resulting in \(\sqrt{s_{\mathrm {NN}}} =5.02\,\text {TeV} \). The direction of the higher-energy \(\mathrm {p}\) beam was initially set up to be clockwise, and was reversed after 20.7\(\,\text {nb}^{-1}\). As a result of the beam energy difference, the nucleon–nucleon center-of-mass in \(\mathrm {p}\mathrm {Pb}\) collisions is not at rest with respect to the laboratory frame. Massless particles emitted at \(|\eta _{\mathrm {CM}} |=0\) in the nucleon–nucleon center-of-mass frame are detected at \(\eta _{\text {lab}}=-0.465\) for the first run period (clockwise \(\mathrm {p}\) beam) and \(+0.465\) for the second run period (counterclockwise \(\mathrm {p}\) beam) in the laboratory frame; the region \(-2.87<y_{\mathrm {CM}} <1.93\) is thus probed by flipping the \(\eta \) of one data set so that the \(\mathrm {p}\)-going direction is always toward positive \(y_{\mathrm {CM}}\). The \(\mathrm {p}\mathrm {p}\) data set is also collected at the same collision energy with an integrated luminosity of 28.0\(\,\text {pb}^{-1}\). In this sample, \(\mathrm{J}/{\psi }\) mesons are measured over \(|y_{\mathrm {CM}} |<2.4\).

In order to remove beam-related background such as beam-gas interactions, inelastic hadronic collisions are selected by requiring a coincidence of at least one of the HF calorimeter towers with more than 3\(\,\text {GeV}\) of total energy on each side of the interaction point. This requirement is not present in \(\mathrm {p}\mathrm {p}\) collisions which suffer less from photon-induced interactions compared to \(\mathrm {p}\mathrm {Pb}\) collisions. The \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) events are further selected to have at least one reconstructed primary vertex composed of two or more associated tracks, excluding the two muons from the \(\mathrm{J}/{\psi }\) candidates, within 25\(\,\text {cm}\) from the nominal interaction point along the beam axis and within 2\(\,\text {cm}\) in its transverse plane. To reject beam-scraping events, the fraction of good-quality tracks associated with the primary vertex is required to be larger than 25% when there are more than 10 tracks per event.

In \(\mathrm {p}\mathrm {Pb}\) collisions, an additional filter [26] is applied to remove events containing multiple interactions per bunch crossing (pileup). After the selection, the residual fraction of pileup events is reduced from 3% to less than 0.2%. This pileup rejection results in a 4.1% signal loss, which is corrected for in the cross section measurements. Since pileup only affects the event activity dependence in \(\mathrm {p}\mathrm {Pb}\) results, no filter is applied in \(\mathrm {p}\mathrm {p}\) results.

Dimuon events are selected by the level-1 trigger, a hardware-based trigger system requiring two muon candidates in the muon detectors with no explicit limitations in \(p_{\mathrm {T}}\) or y. In the offline analysis, muons are required to be within the following kinematic regions, which ensure single-muon reconstruction efficiencies above 10%:
$$\begin{aligned} \begin{array}{lll} &{}p_{\mathrm {T}} ^{\mu }>3.3{\,\text {GeV}/{c}} &{} \text { for }|\eta _{\text {lab}}^{\mu } |<1.2,\\ &{}p_{\mathrm {T}} ^{\mu }>(4.0-1.1|\eta _{\text {lab}}^{\mu } |){\,\text {GeV}/{c}} &{} \text { for }1.2\le |\eta _{\text {lab}}^{\mu } |<2.1,\\ &{}p_{\mathrm {T}} ^{\mu }>1.3{\,\text {GeV}/{c}} &{}\text { for }2.1\le |\eta _{\text {lab}}^{\mu } |<2.4.\\ \end{array} \end{aligned}$$
(1)
The muon pairs are further selected to be of opposite charge, to originate from a common vertex with a \(\chi ^2\) probability greater than 1%, and to match standard identification criteria [27].

Simulated events are used to obtain the correction factors for acceptance and efficiency. The Monte Carlo (MC) samples of \(\mathrm{J}/{\psi }\) mesons are generated using pythia 8.209 [28] for \(\mathrm {p}\mathrm {p}\) and pythia 6.424 [29] for \(\mathrm {p}\mathrm {Pb}\) collisions. Generated particles in the \(\mathrm {p}\mathrm {Pb}\) simulation are boosted by \(\Delta y=\pm 0.465\) to account for the asymmetry of \(\mathrm {p}\) and \(\mathrm {Pb}\) beams in the laboratory frame. Samples for prompt and nonprompt \(\mathrm{J}/{\psi }\) mesons are independently produced using the D6T [30] and Z2 [31] tunes, respectively. In the absence of experimental information on quarkonium polarization in \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) collisions at \(\sqrt{s} =5.02\,\text {TeV} \), it is assumed that prompt \(\mathrm{J}/{\psi }\) mesons are produced unpolarized, as observed in \(\mathrm {p}\mathrm {p}\) collisions at \(\sqrt{s} =7\,\text {TeV} \) [32, 33, 34]. The nonprompt \(\mathrm{J}/{\psi }\) sample includes the polarization (\(\lambda _{\theta }\approx -0.4\)) determined from a measurement of the exclusive \({\mathrm {B}}\) hadron decays (\({\mathrm {B}^{+}}, {\mathrm {B}^0}\), and \(\mathrm{B}^0_\mathrm{s} \)) as implemented in evtgen 9.1 [35]. The \(\mathrm {p}\mathrm {Pb}\) measurements might be affected by physics processes with strong kinematic dependence within an analysis bin, e.g., polarization or energy loss. Such possible physics effects on the final cross sections are not included in the systematic uncertainties, as was done in the previous analyses [8, 9]. The QED final-state radiation from muons is simulated with photos 215.5 [36]. Finally, the CMS detector response is simulated using Geant4  [37].

3 Analysis procedure

3.1 Differential cross section, \(R_{\mathrm {p}\mathrm {Pb}}\), and \(R_{\mathrm {FB}}\)

In this paper, three observables analyzed in \(\mathrm{J}/{\psi }\) meson decays to muon pairs are reported. First, the cross sections are determined based on
$$\begin{aligned} \mathcal {B}(\mathrm{J}/{\psi } \rightarrow \mu ^+ \mu ^- )\frac{\mathrm{d}^2\sigma }{\mathrm{d}p_{\mathrm {T}} \,\mathrm{d}y_{\mathrm {CM}}} = \frac{N^{\mathrm{J}/{\psi }}_{\text {Fit}}/(\text {Acc}\,\varepsilon )}{\mathcal {L}_{\text {int}}\,\Delta p_{\mathrm {T}} \,\Delta y_{\mathrm {CM}}}, \end{aligned}$$
(2)
where \(\mathcal {B}(\mathrm{J}/{\psi } \rightarrow \mu ^+ \mu ^- )\) is the branching fraction to the \(\mu ^+ \mu ^- \) channel [38], \(N^{\mathrm{J}/{\psi }}_{\text {Fit}}\) is the extracted raw yield of \(\mathrm{J}/{\psi }\) mesons in a given \((p_{\mathrm {T}},y_{\mathrm {CM}})\) bin, \((\text {Acc}\,\varepsilon )\) represents the dimuon acceptance times efficiency described in Sect. 3.3, and \(\mathcal {L}_{\text {int}}\) is the integrated luminosity with the values of \((28.0\pm 0.6)\) \(\,\text {pb}^{-1}\) for \(\mathrm {p}\mathrm {p}\)  [39] and \((34.6\pm 1.2)\) \(\,\text {nb}^{-1}\) for \(\mathrm {p}\mathrm {Pb}\)  [40] collisions.
The cross sections are measured in up to nine bins in \(p_{\mathrm {T}}\) ([2,3], [3,4] [4,5], [5,6.5], [6.5,7.5], [7.5,8.5], [8.5,10], [10,14], [14,30]\({\,\text {GeV}/{c}} \)), with the minimum \(p_{\mathrm {T}}\) values varying with \(y_{\mathrm {CM}}\) ranges as shown in Table 1.
Table 1

Rapidity intervals and associated minimum \(p_{\mathrm {T}}\) values for the \(\mathrm{J}/{\psi }\) cross section measurements in \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) collisions

\(y_{\mathrm {CM}}\)

Minimum \(p_{\mathrm {T}}\) (\({\text {GeV}/{c}} \))

 

\(\mathrm {p}\mathrm {p}\)

\(\mathrm {p}\mathrm {Pb}\)

\(1.93<y_{\mathrm {CM}} <2.4\)

2

N/A

\(1.5<y_{\mathrm {CM}} <1.93\)

4

2

\(0.9<y_{\mathrm {CM}} <1.5\)

6.5

4

\(0<y_{\mathrm {CM}} <0.9\)

6.5

6.5

\(-0.9<y_{\mathrm {CM}} <0\)

6.5

6.5

\(-1.5<y_{\mathrm {CM}} <-0.9\)

6.5

6.5

\(-1.93<y_{\mathrm {CM}} <-1.5\)

4

5

\(-2.4<y_{\mathrm {CM}} <-1.93\)

2

4

\(-2.87<y_{\mathrm {CM}} <-2.4\)

N/A

2

The second observable considered is the nuclear modification factor, calculated as
$$\begin{aligned} R_{\mathrm {p}\mathrm {Pb}} (p_{\mathrm {T}},y_{\mathrm {CM}}) = \frac{({\mathrm{d}^2\sigma }/{\mathrm{d}p_{\mathrm {T}} \,\mathrm{d}y_{\mathrm {CM}}})_{\mathrm {p}\mathrm {Pb}}}{\mathrm {A}({\mathrm{d}^2\sigma }/{\mathrm{d}p_{\mathrm {T}} \,\mathrm{d}y_{\mathrm {CM}}})_{{\mathrm {p}\mathrm {p}}}}, \end{aligned}$$
(3)
where \(\mathrm {A}=208\) is the number of nucleons in the \(\mathrm {Pb}\) nucleus.
The third measurement is the forward-to-backward production ratio for \(\mathrm {p}\mathrm {Pb}\) collisions, defined for positive \(y_{\mathrm {CM}}\) by
$$\begin{aligned} R_{\mathrm {FB}} (p_{\mathrm {T}},y_{\mathrm {CM}} >0) = \frac{\mathrm{d}^2\sigma (p_{\mathrm {T}},y_{\mathrm {CM}})/\mathrm{d}p_{\mathrm {T}} \mathrm{d}y_{\mathrm {CM}}}{\mathrm{d}^2\sigma (p_{\mathrm {T}},-y_{\mathrm {CM}})/\mathrm{d}p_{\mathrm {T}} \mathrm{d}y_{\mathrm {CM}}}. \end{aligned}$$
(4)
This variable is a sensitive probe of the dynamics of \(\mathrm{J}/{\psi }\) production by comparing nuclear effects in the forward and the backward \(y_{\mathrm {CM}}\) hemispheres, since \(R_{\mathrm {FB}} (p_{\mathrm {T}},y_{\mathrm {CM}})\) is equivalent to \(R_{\mathrm {p}\mathrm {Pb}} (p_{\mathrm {T}},y_{\mathrm {CM}})/R_{\mathrm {p}\mathrm {Pb}} (p_{\mathrm {T}},-y_{\mathrm {CM}})\). In addition, several uncertainties cancel in the \(R_{\mathrm {FB}}\) ratio, such as those from the integrated luminosity determination. The minimum \(p_{\mathrm {T}}\) values for the \(R_{\mathrm {FB}}\) measurement are 5\({\,\text {GeV}/{c}} \) for \(1.5<|y_{\mathrm {CM}} |<1.93\), and 6.5\({\,\text {GeV}/{c}} \) for \(|y_{\mathrm {CM}} |<1.5\). The ratio \(R_{\mathrm {FB}}\) is also analyzed as a function of \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\), the transverse energy deposited on both sides of the collisions in the HF calorimeters within the \(4<|\eta |<5.2\) range. This energy is related to the impact parameter of the collision. In Table 2, the mean value of \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\) and the fraction of events for each bin used in the analysis are computed from minimum bias \(\mathrm {p}\mathrm {Pb}\) events.
Table 2

Ranges of forward transverse energy, \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\), their mean values, and associated fractions of \(\mathrm {p}\mathrm {Pb}\) events that fall into each category

 \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4} \,(\text {GeV})\)

\(\langle E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4} \rangle \)

Fraction (%)

0–20

9.4

73

20–30

24.3

18

 >30

37.2

9

3.2 Signal extraction

The signal extraction procedure is similar to that in previous CMS analyses of \(\mathrm {p}\mathrm {p}\)  [41, 42] and \(\mathrm {PbPb}\)  [6] collisions. The prompt \(\mathrm{J}/{\psi }\) mesons are separated from those coming from \({\mathrm {B}}\) hadron decays by virtue of the pseudo-proper decay length, \(\ell _{\mathrm{J}/{\psi }} =L_{xy}\,m_{\mathrm{J}/{\psi }}/p_{\mathrm {T}} \), where \(L_{xy}\) is the transverse distance between the primary and secondary dimuon vertices in the laboratory frame, \(m_{\mathrm{J}/{\psi }}\) is the mass of the \(\mathrm{J}/{\psi }\) meson, and \(p_{\mathrm {T}}\) is the dimuon transverse momentum. For each \(p_{\mathrm {T}}\), \(y_{\mathrm {CM}} \), and event activity bin, the fraction of nonprompt \(\mathrm{J}/{\psi }\) mesons (b fraction) is evaluated through an extended unbinned maximum likelihood fit to the invariant mass spectrum and \(\ell _{\mathrm{J}/{\psi }}\) distributions of \(\mu ^+ \mu ^- \) pairs, sequentially. The invariant mass spectrum is fitted first, and some parameters are initialized and/or fixed. Then, the \(\ell _{\mathrm{J}/{\psi }}\) distribution is fitted.
Fig. 1

Examples of the invariant mass (left) and pseudo-proper decay length (right) distributions of \(\mu ^+ \mu ^- \) pairs for \(\mathrm {p}\mathrm {p}\) (upper) and \(\mathrm {p}\mathrm {Pb}\) (lower) collisions. The bin widths of \(\ell _{\mathrm{J}/{\psi }}\) distributions vary from 15 to 500 \(\upmu \)m, with the averaged value of 83 \(\upmu \)m. The projections of the 2D fit function onto the respective axes are overlaid as solid lines. The long-dashed lines show the fitted contribution of nonprompt \(\mathrm{J}/{\psi }\) mesons. The fitted background contributions are shown by short-dashed lines

For the dimuon invariant mass distributions, the shape of the \(\mathrm{J}/{\psi }\) signal is modeled by the sum of a Gaussian function and a Crystal Ball (CB) function [43], with common mean values and independent widths, in order to accommodate the rapidity-dependent mass resolution. The CB function combines a Gaussian core with a power-law tail using two parameters \(n_{\mathrm {CB}}\) and \(\alpha _{\mathrm {CB}} \), to describe final-state QED radiation of muons. Because the two parameters are strongly correlated, the value of \(n_{\mathrm {CB}}\) is fixed at 2.1, while the \(\alpha _{\mathrm {CB}} \) is a free parameter of the fit. This configuration gives the highest fit probability for data, in every \((p_{\mathrm {T}},y_{\mathrm {CM}})\) bin, when various settings of \(\alpha _{\mathrm {CB}} \) and \(n_{\mathrm {CB}}\) are tested. The invariant mass distribution of the underlying continuum background is represented by an exponential function.

For the \(\ell _{\mathrm{J}/{\psi }}\) distributions, the prompt signal component is represented by a resolution function, which depends on the per-event uncertainty in the \(\ell _{\mathrm{J}/{\psi }}\) provided by the reconstruction algorithm of primary and secondary vertices. The resolution function is composed of the sum of two Gaussian functions. A Gaussian with a narrower width (\(\sigma _{\text {narrow}}\)) describes the core of the signal component, while another with a greater width (\(\sigma _{\text {wide}}\)) accounts for the effect of uncertainties in the primary vertex determination and has a fixed value based on MC simulations. The \(\ell _{\mathrm{J}/{\psi }}\) distribution of the nonprompt component is modeled by an exponential decay function convolved with a resolution function. The continuum background component is modeled by the sum of three exponential decay functions, a normal one on one side \(\ell _{\mathrm{J}/{\psi }} >0\), a flipped one on the other side \(\ell _{\mathrm{J}/{\psi }} <0\), and a double-sided one, which are also convolved with a resolution function. The parameters describing the \(\ell _{\mathrm{J}/{\psi }}\) distributions of the background are determined from sidebands in the invariant mass distribution \(2.6<m_{\mu \mu }<2.9{\,\text {GeV}/c^{2}} \) and \(3.3<m_{\mu \mu }<3.5{\,\text {GeV}/c^{2}} \). The results are insensitive to the selection of sideband ranges.

For \(\mathrm {p}\mathrm {Pb}\) analysis, two data sets corresponding to each beam direction are merged and fitted together, after it is determined that the results are compatible with those from a separate analysis, performed over each data set. Figure 1 shows examples of fit projections onto the mass (left) and \(\ell _{\mathrm{J}/{\psi }}\) (right) axes for muon pairs with \(2<p_{\mathrm {T}} <3{\,\text {GeV}/{c}} \) in \(-2.4<y_{\mathrm {CM}} <-1.93\) from \(\mathrm {p}\mathrm {p}\) (upper), and in \(1.5<y_{\mathrm {CM}} <1.93\) from \(\mathrm {p}\mathrm {Pb}\) (lower) collisions.

3.3 Corrections

The acceptance and reconstruction, identification, and trigger efficiency corrections are evaluated from the MC simulation described in Sect. 2. The acceptance is estimated by the fraction of generated \(\mathrm{J}/{\psi }\) mesons in each \((p_{\mathrm {T}},y_{\mathrm {CM}})\) bin, decaying into two muons, each within the fiducial phase space defined in Eq. (1).

In order to compensate for imperfections in the simulation-based efficiencies, an additional scaling factor is applied, calculated with a tag-and-probe (T&P) method [44]. The tag muons require tight identification, and the probe muons are selected with and without satisfying the selection criteria relevant to the efficiency being measured. Then, invariant mass distributions of tag and probe pairs in the \(\mathrm{J}/{\psi }\) mass range are fitted to count the number of signals in the two groups. The single-muon efficiencies are deduced from the ratio of \(\mathrm{J}/{\psi }\) mesons in the passing-probe over all-probe group. The data-to-simulation ratios of single-muon efficiencies are used to correct the dimuon efficiencies, taking the kinematic distributions of decayed muons into account. The dimuon efficiency weights evaluated by the T&P method are similar for \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) events and range from 0.98 to 1.90, with the largest one coming from the lowest \(p_{\mathrm {T}}\) bin. The efficiencies are independent of the event activity, as verified by \(\mathrm {p}\mathrm {Pb}\) data and in a pythia sample embedded in simulated \(\mathrm {p}\mathrm {Pb}\) events generated by hijing 1.383 [45].

In addition, the shape of the uncorrected distributions of \(\mathrm{J}/{\psi }\) yield versus \(p_{\mathrm {T}}\) in data and MC samples are observed to be different. To resolve the possible bias in acceptance and efficiency corrections, the data-to-simulation ratios are fitted by empirical functions and used to reweight the \(p_{\mathrm {T}}\) spectra in MC samples for each \(y_{\mathrm {CM}}\) bin. The effect of reweighting on the acceptance and efficiency is detailed in the next Section.

3.4 Systematic uncertainties

The following sources of systematic uncertainties are considered: fitting procedure, acceptance and efficiency corrections, and integrated luminosities.

To estimate the systematic uncertainty due to the fitting procedure, variations of the parameters or alternative fit functions have been considered for the invariant mass and \(\ell _{\mathrm{J}/{\psi }}\) distributions. For the signal shape in the invariant mass distributions, three alternative parameter settings are tested: (1) \(\alpha _{\mathrm {CB}} \) is set to 1.7, averaged from the default fit, and \(n_{\mathrm {CB}}\) free, (2) both \(\alpha _{\mathrm {CB}} \) and \(n_{\mathrm {CB}}\) are left free, and (3) both are obtained from a MC template and then fixed when fit to the data. The maximum deviation of yields among these three variations is quoted as the uncertainty. For the background fit of the invariant mass distributions, a first-order polynomial is used as an alternative. For the shape of \(\ell _{\mathrm{J}/{\psi }}\) distribution of prompt \(\mathrm{J}/{\psi }\) mesons, two alternatives are studied: (1) both \(\sigma _{\text {wide}}\) and \(\sigma _{\text {narrow}}\) are left free, and (2) both parameters are fixed to the MC templates. The maximum deviation of yields is taken as the uncertainty. Finally, for the \(\ell _{\mathrm{J}/{\psi }}\) distribution shape of nonprompt \(\mathrm{J}/{\psi }\) mesons, the template shape is directly taken from reconstructed MC events. The uncertainties from the previously mentioned methods are 0.7–5.0% for prompt and 1.1–36.3% for nonprompt \(\mathrm{J}/{\psi }\) mesons. They are larger for the shape variations in the \(\ell _{\mathrm{J}/{\psi }}\) than in the invariant mass distributions, especially for nonprompt \(\mathrm{J}/{\psi }\) mesons.

For the uncertainties from acceptance and efficiency correction factors, the effect of reweighting the \(p_{\mathrm {T}}\) spectrum of events generated by pythia generator as described in Sect. 3.3 is considered. The deviation of the correction factors obtained from the default pythia spectra and those from data-based weighted spectra is less than 2.9% across all kinematic ranges. The full deviation values are quoted as the systematic uncertainties. The determination of uncertainties for T&P corrections is performed by propagating the uncertainties in single-muon efficiencies to the dimuon efficiency values. The systematic uncertainties are evaluated by varying the fit conditions in the T&P procedure, and the statistical uncertainties are estimated using a fast parametric simulation. The total uncertainty from T&P corrections is obtained by the quadratic sum of two sources. Uncertainties from the efficiency correction, including the T&P uncertainties, range from 2.4 to 6.1%, and tend to be larger for lower \(p_{\mathrm {T}}\). The uncertainty in the integrated luminosities (2.3% for \(\mathrm {p}\mathrm {p}\)  [39] and 3.5% for \(\mathrm {p}\mathrm {Pb}\)  [40]) is correlated across all data points and affects only the production cross sections and \(R_{\mathrm {p}\mathrm {Pb}}\), while it cancels out in the \(R_{\mathrm {FB}}\) measurements.

Table 3 summarizes systematic uncertainties considered in this analysis. The range refers to different \((p_{\mathrm {T}},y_{\mathrm {CM}})\) bins; the uncertainties tend to be lower at high \(p_{\mathrm {T}}\) and midrapidity, and higher at low \(p_{\mathrm {T}}\) and forward or backward \(y_{\mathrm {CM}}\). The larger uncertainties of the nonprompt \(\mathrm{J}/{\psi }\) yields come from the signal extraction in their lowest \(p_{\mathrm {T}}\) bin, 2–3\({\,\text {GeV}/{c}} \). In the case of the \(R_{\mathrm {p}\mathrm {Pb}}\) measurements with a \(p_{\mathrm {T}}\) limit of 4\({\,\text {GeV}/{c}} \), maximum uncertainties for nonprompt \(\mathrm{J}/{\psi }\) mesons are 12.7% for \(\mathrm {p}\mathrm {p}\) and 12.8% for \(\mathrm {p}\mathrm {Pb}\) collisions. The total systematic uncertainty is evaluated as the quadratic sum of the uncertainties from all sources in each kinematic bin, except for those from the integrated luminosity determination.
Table 3

Summary of the relative systematic uncertainties for the cross section measurements, given in percentages, for prompt and nonprompt \(\mathrm{J}/{\psi }\) mesons in \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) collisions

 

Prompt \(\mathrm{J}/{\psi }\)

Nonprompt \(\mathrm{J}/{\psi }\)

 

\(\mathrm {p}\mathrm {p}\)

\(\mathrm {p}\mathrm {Pb}\)

\(\mathrm {p}\mathrm {p}\)

\(\mathrm {p}\mathrm {Pb}\)

Signal extraction

0.8–3.2

0.7–5.0

2.0–36.3

1.1–29.5

Efficiency

2.4–4.4

2.4–6.1

2.4–4.3

2.4–6.1

Acceptance

0.0–2.3

0.0–1.2

0.0–1.3

0.0–1.3

Integrated luminosity

2.3

3.5

2.3

3.5

Total

2.7–5.3

2.8–7.1

3.4–36.5

3.3–30.1

4 Results

4.1 Prompt \(\mathrm{J}/{\psi }\) mesons

Fig. 2

Differential cross section (multiplied by the dimuon branching fraction) of prompt \(\mathrm{J}/{\psi }\) mesons in \(\mathrm {p}\mathrm {p}\) (left) and \(\mathrm {p}\mathrm {Pb}\) (right) collisions at forward (upper) and backward (lower) \(y_{\mathrm {CM}}\). The vertical bars (smaller than the symbols in most cases) represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty from the integrated luminosity determination, 2.3% for \(\mathrm {p}\mathrm {p}\) and 3.5% for \(\mathrm {p}\mathrm {Pb}\) collisions, is not included in the point-by-point uncertainties

Fig. 3

Rapidity dependence of the cross section (multiplied by the dimuon branching fraction) for prompt \(\mathrm{J}/{\psi }\) mesons in the \(p_{\mathrm {T}}\) intervals of \(6.5<p_{\mathrm {T}} <10{\,\text {GeV}/{c}} \) (circles) and \(10<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \) (squares) in \(\mathrm {p}\mathrm {p}\) (upper) and \(\mathrm {p}\mathrm {Pb}\) (lower) collisions. The vertical dashed line indicates \(y_{\mathrm {CM}} =0\). The vertical bars (smaller than the symbols in most cases) represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty from the integrated luminosity determination, 2.3% for \(\mathrm {p}\mathrm {p}\) and 3.5% for \(\mathrm {p}\mathrm {Pb}\) collisions, is not included in the point-by-point uncertainties

Figure 2 shows the double-differential prompt \(\mathrm{J}/{\psi }\) production cross sections multiplied by the dimuon branching fraction in \(\mathrm {p}\mathrm {p}\) (left) and \(\mathrm {p}\mathrm {Pb}\) (right) collisions, with data points plotted at the center of each bin. Statistical uncertainties are displayed as vertical bars, while boxes that span the \(p_{\mathrm {T}}\) bin width represent systematic uncertainties. Not shown is a global normalization uncertainty of 2.3% in \(\mathrm {p}\mathrm {p}\) and 3.5% in \(\mathrm {p}\mathrm {Pb}\) collisions arising from the integrated luminosity determination.

Prompt \(\mathrm{J}/{\psi }\) \(y_{\mathrm {CM}}\) distributions are shown in Fig. 3 in \(\mathrm {p}\mathrm {p}\) (upper) and \(\mathrm {p}\mathrm {Pb}\) (lower) collisions. The measurements are integrated over two \(p_{\mathrm {T}}\) intervals, \(6.5<p_{\mathrm {T}} <10{\,\text {GeV}/{c}} \) (low \(p_{\mathrm {T}}\)) and \(10<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \) (high \(p_{\mathrm {T}}\)).

The \(p_{\mathrm {T}}\) dependence of prompt \(\mathrm{J}/{\psi }\) \(R_{\mathrm {p}\mathrm {Pb}}\) is shown in Fig. 4, in seven \(y_{\mathrm {CM}}\) ranges for which \(\mathrm {p}\mathrm {p}\) and \(\mathrm {p}\mathrm {Pb}\) measurements overlap. Around midrapidity (\(|y_{\mathrm {CM}} |<0.9\)) and in the three backward \(y_{\mathrm {CM}}\) bins (lower panels), \(R_{\mathrm {p}\mathrm {Pb}}\) is slightly above unity without a clear dependence on \(p_{\mathrm {T}}\). In the most forward bin (\(1.5<y_{\mathrm {CM}} <1.93\)), suppression at low \(p_{\mathrm {T}}\) (\({\lesssim }7.5{\,\text {GeV}/{c}} \)) is observed, followed by a weak increase of \(R_{\mathrm {p}\mathrm {Pb}}\) at higher \(p_{\mathrm {T}}\). The results are compared to three model calculations. One is based on the next-to-leading order (NLO) Color Evaporation Model [14] using the EPS09 [46] nPDF set. The other two are calculated from the nPDF sets of EPS09 and nCTEQ15 [47], respectively, with the parameterization of \(2\rightarrow 2\) partonic scattering process based on data, as described in Ref. [48]. All three \(R_{\mathrm {p}\mathrm {Pb}}\) calculations are marginally lower than the measured values across all \(y_{\mathrm {CM}}\) bins. The calculations based on coherent energy loss are not yet available to describe quarkonium production at large \(p_{\mathrm {T}}\) (\({\gtrsim } m_{\mathrm{J}/{\psi }}\)); therefore, no comparison of the present data with the model [15] is performed.

It is worth noting that the \(R_{\mathrm {p}\mathrm {Pb}}\) values measured in the most forward (\(1.5<y_{\mathrm {CM}} <1.93\)) and backward (\(-2.4<y_{\mathrm {CM}} <-1.93\)) regions are consistent, in the overlapping \(p_{\mathrm {T}}\) intervals (\(4<p_{\mathrm {T}} <8{\,\text {GeV}/{c}} \)), with the inclusive \(\mathrm{J}/{\psi }\) results of the ALICE collaboration [21, 22] over \(2.03<y_{\mathrm {CM}} <3.53\) and \(-4.46<y_{\mathrm {CM}} <-2.96\), obtained using an interpolated \(\mathrm {p}\mathrm {p}\) cross section reference. Although the ALICE results are for inclusive \(\mathrm{J}/{\psi }\) mesons, the nonprompt contribution is expected to be relatively small (\({<}20\%\)) in the domain \(p_{\mathrm {T}} <8{\,\text {GeV}/{c}} \).
Fig. 4

Transverse momentum dependence of \(R_{\mathrm {p}\mathrm {Pb}}\) for prompt \(\mathrm{J}/{\psi }\) mesons in seven \(y_{\mathrm {CM}}\) ranges. The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty of 4.2% is displayed as a gray box at \(R_{\mathrm {p}\mathrm {Pb}} =1\) next to the left axis. The predictions of shadowing models based on the parameterizations EPS09 and nCTEQ15 [14, 46, 47, 48] are also shown

Fig. 5

Rapidity dependence of \(R_{\mathrm {p}\mathrm {Pb}}\) for prompt \(\mathrm{J}/{\psi }\) mesons in two \(p_{\mathrm {T}}\) ranges: \(6.5<p_{\mathrm {T}} <10{\,\text {GeV}/{c}} \) (upper) and \(10<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \) (lower). The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty of 4.2% is displayed as a gray box at \(R_{\mathrm {p}\mathrm {Pb}} =1\) next to the left axis. The predictions of shadowing models based on the parameterizations EPS09 and nCTEQ15 [14, 46, 47, 48] are also shown

Figure 5 displays the \(y_{\mathrm {CM}}\) dependence of prompt \(\mathrm{J}/{\psi }\) \(R_{\mathrm {p}\mathrm {Pb}}\) in the low-\(p_{\mathrm {T}}\) (upper) and the high-\(p_{\mathrm {T}}\) (lower) regions corresponding to the same \(p_{\mathrm {T}}\) bins used in Fig. 3. In the high-\(p_{\mathrm {T}}\) region, \(R_{\mathrm {p}\mathrm {Pb}}\) is above unity over the whole \(y_{\mathrm {CM}}\) range. In the lower-\(p_{\mathrm {T}}\) region, a decrease of \(R_{\mathrm {p}\mathrm {Pb}}\) for increasing \(y_{\mathrm {CM}} \) is suggested. The same theoretical predictions shown in Fig. 4 are overlaid. In contrast to the measurement of \(\mathrm{J}/{\psi }\) mesons in \(\mathrm {PbPb}\) collisions [6], no significant deviation from unity is observed in the \(p_{\mathrm {T}}\) and \(y_{\mathrm {CM}}\) ranges studied here. This suggests that the strong suppression of \(\mathrm{J}/{\psi }\) production in \(\mathrm {PbPb}\) collisions is an effect of QGP formation.

The forward-to-backward ratio of \(\mathrm {p}\mathrm {Pb}\) cross sections, \(R_{\mathrm {FB}}\), in three \(y_{\mathrm {CM}}\) ranges is displayed as a function of \(p_{\mathrm {T}}\) for prompt \(\mathrm{J}/{\psi }\) mesons in Fig. 6. The \(R_{\mathrm {FB}}\) tends to be below unity at low \(p_{\mathrm {T}} \lesssim 7.5{\,\text {GeV}/{c}} \) and forward \(|y_{\mathrm {CM}} |>0.9\). In the \(6.5<p_{\mathrm {T}} <10{\,\text {GeV}/{c}} \) bin, an indication of decrease of \(R_{\mathrm {FB}}\) with increasing \(y_{\mathrm {CM}}\) is observed. The results are in agreement with the measurements from the ATLAS [23], ALICE [21, 22], and LHCb [24] collaborations.

Figure 7 shows \(R_{\mathrm {FB}}\) as a function of \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\) for prompt \(\mathrm{J}/{\psi }\) mesons in three \(y_{\mathrm {CM}}\) ranges. The data are integrated over \(6.5<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \); a lower-\(p_{\mathrm {T}}\) bin, \(5<p_{\mathrm {T}} <6.5{\,\text {GeV}/{c}} \), is shown in addition for the most forward-backward interval, \(1.5<|y_{\mathrm {CM}} |<1.93\). The value of \(R_{\mathrm {FB}}\) decreases as a function of \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\), suggesting that the effects that cause the asymmetry between the forward-to-backward production are larger in events with more hadronic activity.
Fig. 6

Transverse momentum dependence of \(R_{\mathrm {FB}}\) for prompt \(\mathrm{J}/{\psi }\) mesons in three \(y_{\mathrm {CM}}\) regions. The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties

Fig. 7

Dependence of \(R_{\mathrm {FB}}\) for prompt \(\mathrm{J}/{\psi }\) mesons on the hadronic activity in the event, given by the transverse energy deposited in the CMS detector at large pseudorapidities \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\). Data points are slightly shifted horizontally so that they do not overlap. The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties

4.2 Nonprompt \(\mathrm{J}/{\psi }\) mesons

Fig. 8

Differential cross section (multiplied by the dimuon branching fraction) of nonprompt \(\mathrm{J}/{\psi }\) mesons in \(\mathrm {p}\mathrm {p}\) (left) and \(\mathrm {p}\mathrm {Pb}\) (right) collisions at forward (upper) and backward (lower) \(y_{\mathrm {CM}}\). The vertical bars (smaller than the symbols in most cases) represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty from the integrated luminosity determination, 2.3% for \(\mathrm {p}\mathrm {p}\) and 3.5% for \(\mathrm {p}\mathrm {Pb}\) collisions, is not included in the point-by-point uncertainties

Fig. 9

Rapidity dependence of the cross section (multiplied by the dimuon branching fraction) for nonprompt \(\mathrm{J}/{\psi }\) mesons in the \(p_{\mathrm {T}}\) intervals of \(6.5<p_{\mathrm {T}} <10{\,\text {GeV}/{c}} \) (circles) and \(10<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \) (squares) in \(\mathrm {p}\mathrm {p}\) (upper) and \(\mathrm {p}\mathrm {Pb}\) (lower) collisions. The vertical dashed line indicates \(y_{\mathrm {CM}} =0\). The vertical bars (smaller than the symbols in most cases) represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty from the integrated luminosity determination, 2.3% for \(\mathrm {p}\mathrm {p}\) and 3.5% for \(\mathrm {p}\mathrm {Pb}\) collisions, is not included in the point-by-point uncertainties

Fig. 10

Transverse momentum dependence of \(R_{\mathrm {p}\mathrm {Pb}}\) for nonprompt \(\mathrm{J}/{\psi }\) mesons in seven \(y_{\mathrm {CM}}\) ranges. The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty of 4.2% is displayed as a gray box at \(R_{\mathrm {p}\mathrm {Pb}} =1\) next to the left axis

Fig. 11

Rapidity dependence of \(R_{\mathrm {p}\mathrm {Pb}}\) for nonprompt \(\mathrm{J}/{\psi }\) mesons in two \(p_{\mathrm {T}}\) ranges: \(6.5<p_{\mathrm {T}} <10{\,\text {GeV}/{c}} \) (upper) and \(10<p_{\mathrm {T}} <30{\,\text {GeV}/{c}} \) (lower). The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties. The fully correlated global uncertainty of 4.2% is displayed as a gray box at \(R_{\mathrm {p}\mathrm {Pb}} =1\) next to the left axis

Fig. 12

Transverse momentum dependence of \(R_{\mathrm {FB}}\) for nonprompt \(\mathrm{J}/{\psi }\) mesons in three \(y_{\mathrm {CM}}\) regions. The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties

Fig. 13

Dependence of \(R_{\mathrm {FB}}\) for nonprompt \(\mathrm{J}/{\psi }\) mesons on the hadronic activity in the event, given by the transverse energy deposited in the CMS detector at large pseudorapidities \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\). Data points are slightly shifted horizontally so that they do not overlap. The vertical bars represent the statistical uncertainties and the shaded boxes show the systematic uncertainties

The same distributions and observables discussed in Sect. 4.1 have been investigated for the nonprompt \(\mathrm{J}/{\psi }\) meson samples. Differential cross sections are plotted as functions of \(p_{\mathrm {T}}\) and \(y_{\mathrm {CM}}\) in Figs. 8 and 9, respectively, using the same binning as for prompt \(\mathrm{J}/{\psi }\) mesons.

The measurement of \(R_{\mathrm {p}\mathrm {Pb}}\) for nonprompt \(\mathrm{J}/{\psi }\) mesons shown in Fig. 10 as a function of \(p_{\mathrm {T}}\) is compatible with unity in all \(y_{\mathrm {CM}}\) bins. The somewhat larger uncertainties, however, make it difficult to draw firm conclusions for the nonprompt \(\mathrm{J}/{\psi }\) production. The \(y_{\mathrm {CM}}\) dependence of nonprompt \(\mathrm{J}/{\psi }\) \(R_{\mathrm {p}\mathrm {Pb}}\) integrated in the low- and high-\(p_{\mathrm {T}}\) regions is shown in Fig. 11. In all \(y_{\mathrm {CM}}\) bins, \(R_{\mathrm {p}\mathrm {Pb}}\) is consistent with unity although the data hint at a rapidity dependence for \(R_{\mathrm {p}\mathrm {Pb}}\) in the low \(p_{\mathrm {T}}\) region, as found in the prompt \(\mathrm{J}/{\psi }\) meson production (Fig. 5).

Figures 12 and 13 show the \(p_{\mathrm {T}}\) and \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\) dependence of nonprompt \(\mathrm{J}/{\psi }\) \(R_{\mathrm {FB}}\), respectively. The \(R_{\mathrm {FB}}\) ratios seem to increase slightly with \(p_{\mathrm {T}}\) from \({\sim }0.8\pm 0.1\) to \({\sim }1.0\pm 0.1\) in all \(y_{\mathrm {CM}}\) bins. The results are consistent with those from the ATLAS [23] and LHCb [24] collaborations within uncertainties. As seen for prompt \(\mathrm{J}/{\psi }\) meson production, \(R_{\mathrm {FB}}\) for nonprompt \(\mathrm{J}/{\psi }\) meson production decreases with \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\), indicating the presence of different nuclear effects at forward than at backward \(y_{\mathrm {CM}}\) in the regions with the greatest event activity.

5 Summary

Proton–proton (\(\mathrm {p}\mathrm {p}\)) and proton–lead (\(\mathrm {p}\mathrm {Pb}\)) data at \(\sqrt{s_{\mathrm {NN}}} =5.02\,\text {TeV} \) collected with the CMS detector are used to investigate the production of prompt and nonprompt \(\mathrm{J}/{\psi }\) mesons and its possible modification due to cold nuclear matter effects. Double-differential cross sections, as well as the nuclear modification factor \(R_{\mathrm {p}\mathrm {Pb}}\) and forward-to-backward production ratio \(R_{\mathrm {FB}}\), are reported as functions of the \(\mathrm{J}/{\psi }\) \(p_{\mathrm {T}}\) and \(y_{\mathrm {CM}}\).

The \(R_{\mathrm {p}\mathrm {Pb}}\) values for prompt \(\mathrm{J}/{\psi }\) mesons are above unity in mid- and backward \(y_{\mathrm {CM}}\) intervals analyzed (\(-2.4<y_{\mathrm {CM}} <0.9\)), with a possible depletion in the most forward bin at low \(p_{\mathrm {T}} \lesssim 7.5{\,\text {GeV}/{c}} \). In the case of nonprompt \(\mathrm{J}/{\psi }\) meson production, \(R_{\mathrm {p}\mathrm {Pb}}\) is compatible with unity in all \(y_{\mathrm {CM}}\) bins. The prompt \(\mathrm{J}/{\psi }\) \(R_{\mathrm {FB}}\) is below unity for \(p_{\mathrm {T}} \lesssim 7.5{\,\text {GeV}/{c}} \) and forward \(|y_{\mathrm {CM}} |>0.9\), but is consistent with unity for \(p_{\mathrm {T}} \gtrsim 10{\,\text {GeV}/{c}} \). For nonprompt \(\mathrm{J}/{\psi }\) mesons, \(R_{\mathrm {FB}}\) tends to be below unity at \(p_{\mathrm {T}} \lesssim 7.5{\,\text {GeV}/{c}} \) and increases for higher \(p_{\mathrm {T}}\), but with slightly larger uncertainties. The dependence of \(R_{\mathrm {FB}}\) on the hadronic activity in \(\mathrm {p}\mathrm {Pb}\) events has been studied through the variable \(E_{\mathrm {T}}^{{\mathrm {HF}}|\eta |>4}\), characterizing the transverse energy deposited in the CMS detector at large pseudorapidities \(4<|\eta |<5.2\). The \(R_{\mathrm {FB}}\) ratio is observed to decrease with increasing event activity for both prompt and nonprompt \(\mathrm{J}/{\psi }\) mesons, indicating enhanced nuclear matter effects for increasingly central \(\mathrm {p}\mathrm {Pb}\) collisions.

A depletion of prompt \(\mathrm{J}/{\psi }\) mesons in \(\mathrm {p}\mathrm {Pb}\) collisions (as compared to \(\mathrm {p}\mathrm {p}\) collisions) is expected in the forward \(y_{\mathrm {CM}}\) region because of the shadowing of nuclear parton distributions and/or coherent energy loss effects. Such a suppression is observed in the measurements presented in this paper at \(y_{\mathrm {CM}} >1.5\) and \(p_{\mathrm {T}} \lesssim 7.5{\,\text {GeV}/{c}} \), but not at larger \(p_{\mathrm {T}}\), consistent with the expected reduced impact of nuclear parton distributions and coherent energy loss effects for increasing \(\mathrm{J}/{\psi }\) \(p_{\mathrm {T}}\). At negative \(y_{\mathrm {CM}}\), both shadowing and energy loss effects are known to lead to small nuclear modifications, as confirmed by the present measurements. Such processes are also expected to affect the nuclear dependence of \({\mathrm {B}}\) hadron production and thereby, through its decays, nonprompt \(\mathrm{J}/{\psi }\) production. The measurements presented here provide new constraints on cold nuclear matter effects on prompt and nonprompt \(\mathrm{J}/{\psi }\) production over a wide kinematic range.

Notes

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

  1. 1.
    T. Matsui, H. Satz, \({{\rm J}}/\psi \) suppression by quark-gluon plasma formation. Phys. Lett. B 178, 416 (1986). doi: 10.1016/0370-2693(86)91404-8 ADSCrossRefGoogle Scholar
  2. 2.
    NA50 Collaboration, Evidence for deconfinement of quarks and gluons from the \({{\rm J}}/\psi \) suppression pattern measured in Pb–Pb collisions at the CERN-SPS. Phys. Lett. B 477, 28 (2000). doi: 10.1016/S0370-2693(00)00237-9
  3. 3.
    NA60 Collaboration, \({{\rm J}}/\psi \) production in indium–indium collisions at 158 GeV/nucleon. Phys. Rev. Lett. 99, 132302 (2007). doi: 10.1103/PhysRevLett.99.132302. arXiv:0706.4361
  4. 4.
    PHENIX Collaboration, \({{\rm J}}/\psi \) production vs. centrality, transverse momentum, and rapidity in Au \(+\) Au collisions at \({{\sqrt{s}}}_{{\rm NN}}=200\,{\rm GeV}\). Phys. Rev. Lett. 98, 232301 (2007). doi: 10.1103/PhysRevLett.98.232301. arXiv:nucl-ex/0611020
  5. 5.
    STAR Collaboration, \({{\rm J}}/\psi \) production at low \(p_{{\rm T}}\) in Au \(+\) Au and Cu \(+\) Cu collisions at \({{\sqrt{s}}}_{{\rm NN}}=200\,{\rm GeV}\) with the STAR detector. Phys. Rev. C 90, 024906 (2014). doi: 10.1103/PhysRevC.90.024906. arXiv:1310.3563
  6. 6.
    CMS Collaboration, Suppression and azimuthal anisotropy of prompt and nonprompt \({{\rm J}}/\psi \) production in PbPb collisions at \({{\sqrt{s}}}_{{\rm NN}}=2.76\,{{\rm TeV}}\) (2016). arXiv:1610.00613 (Submitted to Eur. Phys. J. C)
  7. 7.
    ALICE Collaboration, Centrality, rapidity and transverse momentum dependence of \({{\rm J}}/\psi \) suppression in Pb–Pb collisions at \({{\sqrt{s}}}_{{\rm NN}}=2.76\,{{\rm TeV}}\). Phys. Lett. B 734, 314 (2014). doi: 10.1016/j.physletb.2014.05.064. arXiv:1311.0214
  8. 8.
    CMS Collaboration, Observation of sequential \(\Upsilon \) suppression in PbPb collisions. Phys. Rev. Lett. 109, 222301 (2012). doi: 10.1103/PhysRevLett.109.222301. arXiv:1208.2826
  9. 9.
    CMS Collaboration, Suppression of \({\Upsilon {\rm (1S)}}\), \({\Upsilon {\rm (2S)}}\) and \({\Upsilon {\rm (3S)}}\) production in PbPb collisions at \({{\sqrt{s}}}_{{\rm NN}}=2.76\,{{\rm TeV}}\) (2016). arXiv:1611.01510 (Submitted to Phys. Lett. B)
  10. 10.
    ALICE Collaboration, Suppression of \({\Upsilon {\rm (1S)}}\) at forward rapidity in Pb–Pb collisions at \({{\sqrt{s}}}_{{\rm NN}}=2.76\,{{\rm TeV}}\). Phys. Lett. B 738, 361 (2014). doi: 10.1016/j.physletb.2014.10.001. arXiv:1405.4493
  11. 11.
    A. Emerick, X. Zhao, R. Rapp, Bottomonia in the quark-gluon plasma and their production at RHIC and LHC. Eur. Phys. J. A 48, 72 (2012). doi: 10.1140/epja/i2012-12072-y. arXiv:1111.6537 ADSCrossRefGoogle Scholar
  12. 12.
    M. Strickland, D. Bazow, Thermal bottomonium suppression at RHIC and LHC. Nucl. Phys. A 879, 25 (2012). doi: 10.1016/j.nuclphysa.2012.02.003. arXiv:1112.2761 ADSCrossRefGoogle Scholar
  13. 13.
    E.G. Ferreiro, F. Fleuret, J.P. Lansberg, A. Rakotozafindrabe, Impact of the nuclear modification of the gluon densities on \({{\rm J}}/\psi \) production in \(p\)Pb collisions at \({{\sqrt{s}}}_{{\rm NN}}=5\,{{\rm TeV}}\). Phys. Rev. C 88, 047901 (2013). doi: 10.1103/PhysRevC.88.047901. arXiv:1305.4569 ADSCrossRefGoogle Scholar
  14. 14.
    R. Vogt, Shadowing effects on \({{\rm J}}/\psi \) and \(\Upsilon \) production at energies available at the CERN Large Hadron Collider. Phys. Rev. C 92, 034909 (2015). doi: 10.1103/PhysRevC.92.034909. arXiv:1507.04418 ADSCrossRefGoogle Scholar
  15. 15.
    F. Arleo, S. Peigné, \({{\rm J}}/\psi \) suppression in \(p\)\(A\) collisions from parton energy loss in cold QCD matter. Phys. Rev. Lett. 109, 122301 (2012). doi: 10.1103/PhysRevLett.109.122301. arXiv:1204.4609 ADSCrossRefGoogle Scholar
  16. 16.
    F. Arleo, R. Kolevatov, S. Peigné, M. Rustamova, Centrality and \(p_{\bot }\) dependence of \({{\rm J}}/\psi \) suppression in proton–nucleus collisions from parton energy loss. JHEP 05, 155 (2013). doi: 10.1007/JHEP05(2013)155. arXiv:1304.0901 ADSCrossRefGoogle Scholar
  17. 17.
    Z.-B. Kang et al., Multiple scattering effects on heavy meson production in p \(+\) A collisions at backward rapidity. Phys. Lett. B 740, 23 (2015). doi: 10.1016/j.physletb.2014.11.024. arXiv:1409.2494 ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Sickles, Possible evidence for radial flow of heavy mesons in d \(+\) Au collisions. Phys. Lett. B 731, 51 (2014). doi: 10.1016/j.physletb.2014.02.013. arXiv:1309.6924 ADSCrossRefGoogle Scholar
  19. 19.
    CMS Collaboration, Study of \(B\) meson production in \(p+Pb\) collisions at \({{\sqrt{s}}}_{{\rm NN}}=5.02\,{{\rm TeV}}\) using exclusive hadronic decays. Phys. Rev. Lett. 116, 032301 (2016). doi: 10.1103/PhysRevLett.116.032301. arXiv:1508.06678
  20. 20.
    CMS Collaboration, Transverse momentum spectra of inclusive b jets in pPb collisions at \({{\sqrt{s}}}_{{\rm NN}}=5.02\,{{\rm TeV}}\). Phys. Lett. B 754, 59 (2016). doi: 10.1016/j.physletb.2016.01.010. arXiv:1510.03373
  21. 21.
    ALICE Collaboration, \({{\rm J}}/\psi \) production and nuclear effects in p–Pb collisions at \({{\sqrt{s}}}_{{\rm NN}}=5.02\,{{\rm TeV}}\). JHEP 02, 073 (2014). doi: 10.1007/JHEP02(2014)073. arXiv:1308.6726
  22. 22.
    ALICE Collaboration, Rapidity and transverse-momentum dependence of the inclusive \({{\rm J}}/\psi \) nuclear modification factor in p–Pb collisions at \({{\sqrt{s}}}_{{\rm NN}}=5.02\,{{\rm TeV}}\). JHEP 06, 055 (2015). doi: 10.1007/JHEP06(2015)055. arXiv:1503.07179
  23. 23.
    ATLAS Collaboration, Measurement of differential \({{\rm J}}/\psi \) production cross sections and forward–backward ratios in \(p+{{\rm Pb}}\) collisions with the ATLAS detectors. Phys. Rev. C 92, 034904 (2015). doi: 10.1103/PhysRevC.92.034904. arXiv:1505.08141
  24. 24.
    LHCb Collaboration, Study of \({{\rm J}}/\psi \) production and cold nuclear matter effects in pPb collisions at \({{\sqrt{s}}}_{{\rm NN}}=5\,{{\rm TeV}}\). JHEP 02, 072 (2014). doi: 10.1007/JHEP02(2014)072. arXiv:1308.6729
  25. 25.
    CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi: 10.1088/1748-0221/3/08/S08004 ADSGoogle Scholar
  26. 26.
    CMS Collaboration, Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724, 213 (2013). doi: 10.1016/j.physletb.2013.06.028. arXiv:1305.0609
  27. 27.
    CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at \({\sqrt{s}}=7\,{{{\rm TeV}}}\). JINST 7, P10002 (2012). doi: 10.1088/1748-0221/7/10/P10002. arXiv:1206.4071
  28. 28.
    T. Sjöstrand et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). doi: 10.1016/j.cpc.2015.01.024. arXiv:1410.3012 ADSCrossRefMATHGoogle Scholar
  29. 29.
    T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi: 10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175 ADSCrossRefGoogle Scholar
  30. 30.
    P. Bartalini, L. Fano (eds.), Proceedings, 1st International Workshop on Multiple Partonic Interactions at the LHC (MPI08) (2010). arXiv:1003.4220
  31. 31.
    R. Field, Early LHC underlying event data—findings and surprises, in Hadron collider physics. Proceedings, 22nd Conference, HCP 2010, Toronto, Canada, August 23–27 (2010). arXiv:1010.3558
  32. 32.
    CMS Collaboration, Measurement of the prompt \({{\rm J}}/\psi \) and \(\psi (2S)\) polarizations in pp collisions at \({\sqrt{s}}=7\,{{\rm TeV}}\). Phys. Lett. B 727, 381 (2013). doi: 10.1016/j.physletb.2013.10.055. arXiv:1307.6070
  33. 33.
    LHCb Collaboration, Measurement of \({{\rm J}}/\psi \) polarization in pp collisions at \({\sqrt{s}}=7\,{{\rm TeV}}\). Eur. Phys. J. C 73, 2631 (2013). doi: 10.1140/epjc/s10052-013-2631-3. arXiv:1307.6379
  34. 34.
    ALICE Collaboration, \(J/\Psi \) polarization in \(pp\) collisions at \({\sqrt{s}}=7\,{{\rm TeV}}\). Phys. Rev. Lett. 108, 082001 (2012). doi: 10.1103/PhysRevLett.108.082001. arXiv:1111.1630
  35. 35.
    D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152 (2001). doi: 10.1016/S0168-9002(01)00089-4 ADSCrossRefGoogle Scholar
  36. 36.
    E. Barberio, Z. Wa̧s, PHOTOS—a universal Monte Carlo for QED radiative corrections: version 2.0. Comput. Phys. Commun. 79, 291 (1994). doi: 10.1016/0010-4655(94)90074-4 ADSCrossRefGoogle Scholar
  37. 37.
    GEANT Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). doi: 10.1016/S0168-9002(03)01368-8
  38. 38.
    Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C 40, 100001 (2016). doi: 10.1088/1674-1137/40/10/100001
  39. 39.
    CMS Collaboration, CMS luminosity calibration for the pp reference run at \({\sqrt{s}}=5.02\,{{\rm TeV}}\). CMS Physics Analysis Summary CMS-PAS-LUM-16-001 (2016)Google Scholar
  40. 40.
    CMS Collaboration, Luminosity calibration for the 2013 proton–lead and proton–proton data taking. CMS Physics Analysis Summary CMS-PAS-LUM-13-002 (2014)Google Scholar
  41. 41.
    CMS Collaboration, \({{\rm J}}/\psi \) and \(\psi (2S)\) production in pp collisions at \({\sqrt{s}}=7\,{{\rm TeV}}\). JHEP 02, 011 (2012). doi: 10.1007/JHEP02(2012)011. arXiv:1111.1557
  42. 42.
    CMS Collaboration, Measurement of \({{\rm J}}/\psi \) and \({\psi }(2S)\) prompt double-differential cross sections in \(pp\) collisions at \({\sqrt{s}}=7\,{{\rm TeV}}\). Phys. Rev. Lett. 114, 191802 (2015). doi: 10.1103/PhysRevLett.114.191802. arXiv:1502.04155
  43. 43.
    M.J. Oreglia, A study of the reactions \(\psi ^\prime \rightarrow \gamma \gamma \psi \). PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236Google Scholar
  44. 44.
    CMS Collaboration, Measurements of inclusive W and Z cross sections in pp collisions at \({\sqrt{s}}=7\,{{\rm TeV}}\). JHEP 01, 080 (2011). doi: 10.1007/JHEP01(2011)080. arXiv:1012.2466
  45. 45.
    X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in pp, pA and AA collisions. Phys. Rev. D 44, 3501 (1991). doi: 10.1103/PhysRevD.44.3501 ADSCrossRefGoogle Scholar
  46. 46.
    K.J. Eskola, H. Paukkunen, C.A. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions. JHEP 04, 065 (2009). doi: 10.1088/1126-6708/2009/04/065. arXiv:0902.4154 ADSCrossRefGoogle Scholar
  47. 47.
    K. Kovařìk et al., nCTEQ15: global analysis of nuclear parton distributions with uncertainties in the CTEQ framework. Phys. Rev. D 93, 085037 (2016). doi: 10.1103/PhysRevD.93.085037. arXiv:1509.00792 ADSCrossRefGoogle Scholar
  48. 48.
    J.-P. Lansberg, H.-S. Shao, Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton–nucleus collisions. Eur. Phys. J. C 77, 1 (2017). doi: 10.1140/epjc/s10052-016-4575-x. arXiv:1610.05382 ADSCrossRefGoogle Scholar

Copyright information

© CERN for the benefit of the CMS collaboration 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Authors and Affiliations

  • A. M. Sirunyan
    • 1
  • A. Tumasyan
    • 1
  • W. Adam
    • 2
  • E. Asilar
    • 2
  • T. Bergauer
    • 2
  • J. Brandstetter
    • 2
  • E. Brondolin
    • 2
  • M. Dragicevic
    • 2
  • J. Erö
    • 2
  • M. Flechl
    • 2
  • M. Friedl
    • 2
  • R. Frühwirth
    • 2
  • V. M. Ghete
    • 2
  • C. Hartl
    • 2
  • N. Hörmann
    • 2
  • J. Hrubec
    • 2
  • M. Jeitler
    • 2
  • A. König
    • 2
  • I. Krätschmer
    • 2
  • D. Liko
    • 2
  • T. Matsushita
    • 2
  • I. Mikulec
    • 2
  • D. Rabady
    • 2
  • N. Rad
    • 2
  • B. Rahbaran
    • 2
  • H. Rohringer
    • 2
  • J. Schieck
    • 2
  • J. Strauss
    • 2
  • W. Waltenberger
    • 2
  • C.-E. Wulz
    • 2
  • O. Dvornikov
    • 3
  • V. Makarenko
    • 3
  • V. Mossolov
    • 3
  • J. Suarez Gonzalez
    • 3
  • V. Zykunov
    • 3
  • N. Shumeiko
    • 4
  • S. Alderweireldt
    • 5
  • E. A. De Wolf
    • 5
  • X. Janssen
    • 5
  • J. Lauwers
    • 5
  • M. Van De Klundert
    • 5
  • H. Van Haevermaet
    • 5
  • P. Van Mechelen
    • 5
  • N. Van Remortel
    • 5
  • A. Van Spilbeeck
    • 5
  • S. Abu Zeid
    • 6
  • F. Blekman
    • 6
  • J. D’Hondt
    • 6
  • N. Daci
    • 6
  • I. De Bruyn
    • 6
  • K. Deroover
    • 6
  • S. Lowette
    • 6
  • S. Moortgat
    • 6
  • L. Moreels
    • 6
  • A. Olbrechts
    • 6
  • Q. Python
    • 6
  • K. Skovpen
    • 6
  • S. Tavernier
    • 6
  • W. Van Doninck
    • 6
  • P. Van Mulders
    • 6
  • I. Van Parijs
    • 6
  • H. Brun
    • 7
  • B. Clerbaux
    • 7
  • G. De Lentdecker
    • 7
  • H. Delannoy
    • 7
  • G. Fasanella
    • 7
  • L. Favart
    • 7
  • R. Goldouzian
    • 7
  • A. Grebenyuk
    • 7
  • G. Karapostoli
    • 7
  • T. Lenzi
    • 7
  • A. Léonard
    • 7
  • J. Luetic
    • 7
  • T. Maerschalk
    • 7
  • A. Marinov
    • 7
  • A. Randle-conde
    • 7
  • T. Seva
    • 7
  • C. Vander Velde
    • 7
  • P. Vanlaer
    • 7
  • D. Vannerom
    • 7
  • R. Yonamine
    • 7
  • F. Zenoni
    • 7
  • F. Zhang
    • 7
  • A. Cimmino
    • 8
  • T. Cornelis
    • 8
  • D. Dobur
    • 8
  • A. Fagot
    • 8
  • M. Gul
    • 8
  • I. Khvastunov
    • 8
  • D. Poyraz
    • 8
  • S. Salva
    • 8
  • R. Schöfbeck
    • 8
  • M. Tytgat
    • 8
  • W. Van Driessche
    • 8
  • E. Yazgan
    • 8
  • N. Zaganidis
    • 8
  • H. Bakhshiansohi
    • 9
  • C. Beluffi
    • 9
  • O. Bondu
    • 9
  • S. Brochet
    • 9
  • G. Bruno
    • 9
  • A. Caudron
    • 9
  • S. De Visscher
    • 9
  • C. Delaere
    • 9
  • M. Delcourt
    • 9
  • B. Francois
    • 9
  • A. Giammanco
    • 9
  • A. Jafari
    • 9
  • M. Komm
    • 9
  • G. Krintiras
    • 9
  • V. Lemaitre
    • 9
  • A. Magitteri
    • 9
  • A. Mertens
    • 9
  • M. Musich
    • 9
  • K. Piotrzkowski
    • 9
  • L. Quertenmont
    • 9
  • M. Selvaggi
    • 9
  • M. Vidal Marono
    • 9
  • S. Wertz
    • 9
  • N. Beliy
    • 10
  • W. L. Aldá Júnior
    • 11
  • F. L. Alves
    • 11
  • G. A. Alves
    • 11
  • L. Brito
    • 11
  • C. Hensel
    • 11
  • A. Moraes
    • 11
  • M. E. Pol
    • 11
  • P. Rebello Teles
    • 11
  • E. Belchior Batista Das Chagas
    • 12
  • W. Carvalho
    • 12
  • J. Chinellato
    • 12
  • A. Custódio
    • 12
  • E. M. Da Costa
    • 12
  • G. G. Da Silveira
    • 12
  • D. De Jesus Damiao
    • 12
  • C. De Oliveira Martins
    • 12
  • S. Fonseca De Souza
    • 12
  • L. M. Huertas Guativa
    • 12
  • H. Malbouisson
    • 12
  • D. Matos Figueiredo
    • 12
  • C. Mora Herrera
    • 12
  • L. Mundim
    • 12
  • H. Nogima
    • 12
  • W. L. Prado Da Silva
    • 12
  • A. Santoro
    • 12
  • A. Sznajder
    • 12
  • E. J. Tonelli Manganote
    • 12
  • F. Torres Da Silva De Araujo
    • 12
  • A. Vilela Pereira
    • 12
  • S. Ahuja
    • 13
  • C. A. Bernardes
    • 13
  • S. Dogra
    • 13
  • T. R. Fernandez Perez Tomei
    • 13
  • E. M. Gregores
    • 13
  • P. G. Mercadante
    • 13
  • C. S. Moon
    • 13
  • S. F. Novaes
    • 13
  • Sandra S. Padula
    • 13
  • D. Romero Abad
    • 13
  • J. C. Ruiz Vargas
    • 13
  • A. Aleksandrov
    • 14
  • R. Hadjiiska
    • 14
  • P. Iaydjiev
    • 14
  • M. Rodozov
    • 14
  • S. Stoykova
    • 14
  • G. Sultanov
    • 14
  • M. Vutova
    • 14
  • A. Dimitrov
    • 15
  • I. Glushkov
    • 15
  • L. Litov
    • 15
  • B. Pavlov
    • 15
  • P. Petkov
    • 15
  • W. Fang
    • 16
  • M. Ahmad
    • 17
  • J. G. Bian
    • 17
  • G. M. Chen
    • 17
  • H. S. Chen
    • 17
  • M. Chen
    • 17
  • Y. Chen
    • 17
  • T. Cheng
    • 17
  • C. H. Jiang
    • 17
  • D. Leggat
    • 17
  • Z. Liu
    • 17
  • F. Romeo
    • 17
  • M. Ruan
    • 17
  • S. M. Shaheen
    • 17
  • A. Spiezia
    • 17
  • J. Tao
    • 17
  • C. Wang
    • 17
  • Z. Wang
    • 17
  • H. Zhang
    • 17
  • J. Zhao
    • 17
  • Y. Ban
    • 18
  • G. Chen
    • 18
  • Q. Li
    • 18
  • S. Liu
    • 18
  • Y. Mao
    • 18
  • S. J. Qian
    • 18
  • D. Wang
    • 18
  • Z. Xu
    • 18
  • C. Avila
    • 19
  • A. Cabrera
    • 19
  • L. F. Chaparro Sierra
    • 19
  • C. Florez
    • 19
  • J. P. Gomez
    • 19
  • C. F. González Hernández
    • 19
  • J. D. Ruiz Alvarez
    • 19
  • J. C. Sanabria
    • 19
  • N. Godinovic
    • 20
  • D. Lelas
    • 20
  • I. Puljak
    • 20
  • P. M. Ribeiro Cipriano
    • 20
  • T. Sculac
    • 20
  • Z. Antunovic
    • 21
  • M. Kovac
    • 21
  • V. Brigljevic
    • 22
  • D. Ferencek
    • 22
  • K. Kadija
    • 22
  • B. Mesic
    • 22
  • T. Susa
    • 22
  • A. Attikis
    • 23
  • G. Mavromanolakis
    • 23
  • J. Mousa
    • 23
  • C. Nicolaou
    • 23
  • F. Ptochos
    • 23
  • P. A. Razis
    • 23
  • H. Rykaczewski
    • 23
  • D. Tsiakkouri
    • 23
  • M. Finger
    • 24
  • M. FingerJr.
    • 24
  • E. Carrera Jarrin
    • 25
  • Y. Assran
    • 26
  • T. Elkafrawy
    • 26
  • A. Mahrous
    • 26
  • M. Kadastik
    • 27
  • L. Perrini
    • 27
  • M. Raidal
    • 27
  • A. Tiko
    • 27
  • C. Veelken
    • 27
  • P. Eerola
    • 28
  • J. Pekkanen
    • 28
  • M. Voutilainen
    • 28
  • J. Härkönen
    • 29
  • T. Järvinen
    • 29
  • V. Karimäki
    • 29
  • R. Kinnunen
    • 29
  • T. Lampén
    • 29
  • K. Lassila-Perini
    • 29
  • S. Lehti
    • 29
  • T. Lindén
    • 29
  • P. Luukka
    • 29
  • J. Tuominiemi
    • 29
  • E. Tuovinen
    • 29
  • L. Wendland
    • 29
  • J. Talvitie
    • 30
  • T. Tuuva
    • 30
  • M. Besancon
    • 31
  • F. Couderc
    • 31
  • M. Dejardin
    • 31
  • D. Denegri
    • 31
  • B. Fabbro
    • 31
  • J. L. Faure
    • 31
  • C. Favaro
    • 31
  • F. Ferri
    • 31
  • S. Ganjour
    • 31
  • S. Ghosh
    • 31
  • A. Givernaud
    • 31
  • P. Gras
    • 31
  • G. Hamel de Monchenault
    • 31
  • P. Jarry
    • 31
  • I. Kucher
    • 31
  • E. Locci
    • 31
  • M. Machet
    • 31
  • J. Malcles
    • 31
  • J. Rander
    • 31
  • A. Rosowsky
    • 31
  • M. Titov
    • 31
  • A. Abdulsalam
    • 32
  • I. Antropov
    • 32
  • F. Arleo
    • 32
  • S. Baffioni
    • 32
  • F. Beaudette
    • 32
  • P. Busson
    • 32
  • L. Cadamuro
    • 32
  • E. Chapon
    • 32
  • C. Charlot
    • 32
  • O. Davignon
    • 32
  • R. Granier de Cassagnac
    • 32
  • M. Jo
    • 32
  • S. Lisniak
    • 32
  • P. Miné
    • 32
  • M. Nguyen
    • 32
  • C. Ochando
    • 32
  • G. Ortona
    • 32
  • P. Paganini
    • 32
  • P. Pigard
    • 32
  • S. Regnard
    • 32
  • R. Salerno
    • 32
  • Y. Sirois
    • 32
  • T. Strebler
    • 32
  • Y. Yilmaz
    • 32
  • A. Zabi
    • 32
  • A. Zghiche
    • 32
  • J.-L. Agram
    • 33
  • J. Andrea
    • 33
  • A. Aubin
    • 33
  • D. Bloch
    • 33
  • J.-M. Brom
    • 33
  • M. Buttignol
    • 33
  • E. C. Chabert
    • 33
  • N. Chanon
    • 33
  • C. Collard
    • 33
  • E. Conte
    • 33
  • X. Coubez
    • 33
  • J.-C. Fontaine
    • 33
  • D. Gelé
    • 33
  • U. Goerlach
    • 33
  • A.-C. Le Bihan
    • 33
  • P. Van Hove
    • 33
  • S. Gadrat
    • 34
  • S. Beauceron
    • 35
  • C. Bernet
    • 35
  • G. Boudoul
    • 35
  • C. A. Carrillo Montoya
    • 35
  • R. Chierici
    • 35
  • D. Contardo
    • 35
  • B. Courbon
    • 35
  • P. Depasse
    • 35
  • H. El Mamouni
    • 35
  • J. Fay
    • 35
  • S. Gascon
    • 35
  • M. Gouzevitch
    • 35
  • G. Grenier
    • 35
  • B. Ille
    • 35
  • F. Lagarde
    • 35
  • I. B. Laktineh
    • 35
  • M. Lethuillier
    • 35
  • L. Mirabito
    • 35
  • A. L. Pequegnot
    • 35
  • S. Perries
    • 35
  • A. Popov
    • 35
  • D. Sabes
    • 35
  • V. Sordini
    • 35
  • M. Vander Donckt
    • 35
  • P. Verdier
    • 35
  • S. Viret
    • 35
  • A. Khvedelidze
    • 36
  • Z. Tsamalaidze
    • 37
  • C. Autermann
    • 38
  • S. Beranek
    • 38
  • L. Feld
    • 38
  • M. K. Kiesel
    • 38
  • K. Klein
    • 38
  • M. Lipinski
    • 38
  • M. Preuten
    • 38
  • C. Schomakers
    • 38
  • J. Schulz
    • 38
  • T. Verlage
    • 38
  • A. Albert
    • 39
  • M. Brodski
    • 39
  • E. Dietz-Laursonn
    • 39
  • D. Duchardt
    • 39
  • M. Endres
    • 39
  • M. Erdmann
    • 39
  • S. Erdweg
    • 39
  • T. Esch
    • 39
  • R. Fischer
    • 39
  • A. Güth
    • 39
  • M. Hamer
    • 39
  • T. Hebbeker
    • 39
  • C. Heidemann
    • 39
  • K. Hoepfner
    • 39
  • S. Knutzen
    • 39
  • M. Merschmeyer
    • 39
  • A. Meyer
    • 39
  • P. Millet
    • 39
  • S. Mukherjee
    • 39
  • M. Olschewski
    • 39
  • K. Padeken
    • 39
  • T. Pook
    • 39
  • M. Radziej
    • 39
  • H. Reithler
    • 39
  • M. Rieger
    • 39
  • F. Scheuch
    • 39
  • L. Sonnenschein
    • 39
  • D. Teyssier
    • 39
  • S. Thüer
    • 39
  • V. Cherepanov
    • 40
  • G. Flügge
    • 40
  • B. Kargoll
    • 40
  • T. Kress
    • 40
  • A. Künsken
    • 40
  • J. Lingemann
    • 40
  • T. Müller
    • 40
  • A. Nehrkorn
    • 40
  • A. Nowack
    • 40
  • C. Pistone
    • 40
  • O. Pooth
    • 40
  • A. Stahl
    • 40
  • M. Aldaya Martin
    • 41
  • T. Arndt
    • 41
  • C. Asawatangtrakuldee
    • 41
  • K. Beernaert
    • 41
  • O. Behnke
    • 41
  • U. Behrens
    • 41
  • A. A. Bin Anuar
    • 41
  • K. Borras
    • 41
  • A. Campbell
    • 41
  • P. Connor
    • 41
  • C. Contreras-Campana
    • 41
  • F. Costanza
    • 41
  • C. Diez Pardos
    • 41
  • G. Dolinska
    • 41
  • G. Eckerlin
    • 41
  • D. Eckstein
    • 41
  • T. Eichhorn
    • 41
  • E. Eren
    • 41
  • E. Gallo
    • 41
  • J. Garay Garcia
    • 41
  • A. Geiser
    • 41
  • A. Gizhko
    • 41
  • J. M. Grados Luyando
    • 41
  • A. Grohsjean
    • 41
  • P. Gunnellini
    • 41
  • A. Harb
    • 41
  • J. Hauk
    • 41
  • M. Hempel
    • 41
  • H. Jung
    • 41
  • A. Kalogeropoulos
    • 41
  • O. Karacheban
    • 41
  • M. Kasemann
    • 41
  • J. Keaveney
    • 41
  • C. Kleinwort
    • 41
  • I. Korol
    • 41
  • D. Krücker
    • 41
  • W. Lange
    • 41
  • A. Lelek
    • 41
  • T. Lenz
    • 41
  • J. Leonard
    • 41
  • K. Lipka
    • 41
  • A. Lobanov
    • 41
  • W. Lohmann
    • 41
  • R. Mankel
    • 41
  • I.-A. Melzer-Pellmann
    • 41
  • A. B. Meyer
    • 41
  • G. Mittag
    • 41
  • J. Mnich
    • 41
  • A. Mussgiller
    • 41
  • D. Pitzl
    • 41
  • R. Placakyte
    • 41
  • A. Raspereza
    • 41
  • B. Roland
    • 41
  • M. Ö. Sahin
    • 41
  • P. Saxena
    • 41
  • T. Schoerner-Sadenius
    • 41
  • S. Spannagel
    • 41
  • N. Stefaniuk
    • 41
  • G. P. Van Onsem
    • 41
  • R. Walsh
    • 41
  • C. Wissing
    • 41
  • V. Blobel
    • 42
  • M. Centis Vignali
    • 42
  • A. R. Draeger
    • 42
  • T. Dreyer
    • 42
  • E. Garutti
    • 42
  • D. Gonzalez
    • 42
  • J. Haller
    • 42
  • M. Hoffmann
    • 42
  • A. Junkes
    • 42
  • R. Klanner
    • 42
  • R. Kogler
    • 42
  • N. Kovalchuk
    • 42
  • T. Lapsien
    • 42
  • I. Marchesini
    • 42
  • D. Marconi
    • 42
  • M. Meyer
    • 42
  • M. Niedziela
    • 42
  • D. Nowatschin
    • 42
  • F. Pantaleo
    • 42
  • T. Peiffer
    • 42
  • A. Perieanu
    • 42
  • J. Poehlsen
    • 42
  • C. Scharf
    • 42
  • P. Schleper
    • 42
  • A. Schmidt
    • 42
  • S. Schumann
    • 42
  • J. Schwandt
    • 42
  • H. Stadie
    • 42
  • G. Steinbrück
    • 42
  • F. M. Stober
    • 42
  • M. Stöver
    • 42
  • H. Tholen
    • 42
  • D. Troendle
    • 42
  • E. Usai
    • 42
  • L. Vanelderen
    • 42
  • A. Vanhoefer
    • 42
  • B. Vormwald
    • 42
  • M. Akbiyik
    • 43
  • C. Barth
    • 43
  • S. Baur
    • 43
  • C. Baus
    • 43
  • J. Berger
    • 43
  • E. Butz
    • 43
  • R. Caspart
    • 43
  • T. Chwalek
    • 43
  • F. Colombo
    • 43
  • W. De Boer
    • 43
  • A. Dierlamm
    • 43
  • S. Fink
    • 43
  • B. Freund
    • 43
  • R. Friese
    • 43
  • M. Giffels
    • 43
  • A. Gilbert
    • 43
  • P. Goldenzweig
    • 43
  • D. Haitz
    • 43
  • F. Hartmann
    • 43
  • S. M. Heindl
    • 43
  • U. Husemann
    • 43
  • I. Katkov
    • 43
  • S. Kudella
    • 43
  • H. Mildner
    • 43
  • M. U. Mozer
    • 43
  • Th. Müller
    • 43
  • M. Plagge
    • 43
  • G. Quast
    • 43
  • K. Rabbertz
    • 43
  • S. Röcker
    • 43
  • F. Roscher
    • 43
  • M. Schröder
    • 43
  • I. Shvetsov
    • 43
  • G. Sieber
    • 43
  • H. J. Simonis
    • 43
  • R. Ulrich
    • 43
  • S. Wayand
    • 43
  • M. Weber
    • 43
  • T. Weiler
    • 43
  • S. Williamson
    • 43
  • C. Wöhrmann
    • 43
  • R. Wolf
    • 43
  • G. Anagnostou
    • 44
  • G. Daskalakis
    • 44
  • T. Geralis
    • 44
  • V. A. Giakoumopoulou
    • 44
  • A. Kyriakis
    • 44
  • D. Loukas
    • 44
  • I. Topsis-Giotis
    • 44
  • S. Kesisoglou
    • 45
  • A. Panagiotou
    • 45
  • N. Saoulidou
    • 45
  • E. Tziaferi
    • 45
  • I. Evangelou
    • 46
  • G. Flouris
    • 46
  • C. Foudas
    • 46
  • P. Kokkas
    • 46
  • N. Loukas
    • 46
  • N. Manthos
    • 46
  • I. Papadopoulos
    • 46
  • E. Paradas
    • 46
  • N. Filipovic
    • 47
  • G. Pasztor
    • 47
  • G. Bencze
    • 48
  • C. Hajdu
    • 48
  • D. Horvath
    • 48
  • F. Sikler
    • 48
  • V. Veszpremi
    • 48
  • G. Vesztergombi
    • 48
  • A. J. Zsigmond
    • 48
  • N. Beni
    • 49
  • S. Czellar
    • 49
  • J. Karancsi
    • 49
  • A. Makovec
    • 49
  • J. Molnar
    • 49
  • Z. Szillasi
    • 49
  • M. Bartók
    • 50
  • P. Raics
    • 50
  • Z. L. Trocsanyi
    • 50
  • B. Ujvari
    • 50
  • J. R. Komaragiri
    • 51
  • S. Bahinipati
    • 52
  • S. Bhowmik
    • 52
  • S. Choudhury
    • 52
  • P. Mal
    • 52
  • K. Mandal
    • 52
  • A. Nayak
    • 52
  • D. K. Sahoo
    • 52
  • N. Sahoo
    • 52
  • S. K. Swain
    • 52
  • S. Bansal
    • 53
  • S. B. Beri
    • 53
  • V. Bhatnagar
    • 53
  • R. Chawla
    • 53
  • U. Bhawandeep
    • 53
  • A. K. Kalsi
    • 53
  • A. Kaur
    • 53
  • M. Kaur
    • 53
  • R. Kumar
    • 53
  • P. Kumari
    • 53
  • A. Mehta
    • 53