Interpretation of 750 GeV diphoton excess at LHC in singlet extension of coloroctet neutrino mass model
 892 Downloads
 20 Citations
Abstract
We propose that the possible 750 GeVdiphoton excess can be explained in the coloroctet neutrino mass model extended with a scalar singlet \(\Phi \). The model generally contains \(N_s\) species of coloroctet, electroweak doublet scalars S and \(N_f\) species of coloroctet, electroweak triplet \(\chi \) or singlet \(\rho \) fermions. While both scalars and fermions contribute to the production of \(\Phi \) through gluon fusion, only the charged members induce the diphoton decay of \(\Phi \). The diphoton rate can be significantly enhanced due to interference between the scalar and fermion loops. We show that the diphoton cross section can be from 3 to 10 fb for \(\mathcal {O}(\mathrm{TeV})\) coloroctet particles while evading all current LHC limits.
Keywords
Yukawa Coupling Neutrino Mass Trilinear Coupling Diphoton Rate Singlet Fermion1 The model
Recently, both ATLAS and CMS have found an excess in the diphoton channel around \(750~\mathrm{GeV}\) with a width possibly \({\lesssim }45~\mathrm{GeV}\) in the LHC runII data at \(\sqrt{s}=13~\mathrm{TeV}\) [1, 2]. The local significance of the excess is \(3.6\sigma \) at \(747~\mathrm{GeV}\) and \(2.6\sigma \) at \(760~\mathrm{GeV}\), and the global significance is \(2.0\sigma \) and \(1.2\sigma \) for ATLAS [1] and CMS [2], respectively. While CMS previously observed a slight excess \(\sim 2\sigma \) around \(750~\mathrm{GeV}\) at \(\sqrt{s}=8~\mathrm{TeV}\) [3], ATLAS did not go beyond \(600~\mathrm{GeV}\) in the same channel [4]. If the excess persists with accumulation of more data in the near future, it will likely point to new physics beyond the standard model (SM). The excess has caused a burst of discussions on its possible origin in various phenomenological frameworks [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161].
On the other hand, there is an established piece of evidence for new physics beyond SM, namely the neutrino mass; and dark matter whose gravitational evidence is robust may also originate from new particles and physics that are unknown to us so far. It would be desirable if the newly found excess is related to the same physics of the neutrino mass or dark matter. In this work we try to connect the excess with physics that is responsible for neutrino mass. Since the cross section for the excess is large for such a heavy resonance, it seems natural that the resonance is produced and decays through interactions with some new particles that participate in strong and electromagnetic interactions. In this context the coloroctet model of the neutrino mass [162] stands out, in which the octet particles generating radiative neutrino mass would also couple to the resonance field resulting in its strong production and electromagnetic decay.
2 The diphoton excess and LHC constraints
The rich phenomenology for coloroctet particles at LHC has been extensively studied in the literature [164, 165, 166, 167, 168, 169]. We mention some of it relevant to our study here. The Yukawa couplings of S to quarks (q) must be small to avoid constraints from flavor physics and single production of neutral coloroctet scalars at LHC [170, 171, 172]. Consequently, the effective \(\Phi q\bar{q}\) coupling induced by the S loop can be ignored. The direct search for pair production of S in the \(Zgb\bar{b}\) (with g denoting gluon) final state by CMS has excluded \(m_S<625~\mathrm{GeV}\) at 95 % CL [173], while the CMS search for four jets [174] and ATLAS search for four tops [175] have excluded \(m_S\lesssim 830~\mathrm{GeV}\) at 95 % CL. Concerning coloroctet fermions, the pair production of gluinos has been searched for at LHC in the context of simplified supersymmetric models, with their masses excluded up to 1.1–\(1.2~\mathrm{TeV}\) at 8 TeV LHC [176, 177]. Very recently, the analysis of 13 TeV LHC data has significantly extended the lower mass bound up to 1.6–\(1.8~\mathrm{TeV}\) [178, 179]. Considering these direct search constraints, we will illustrate our numerical result by assuming \(m_{\chi ,\rho }=2~\mathrm{TeV}\) and \(m_S=1,~1.5~\mathrm{TeV}\) throughout this paper.

The diphoton cross section required by the excess can be reached for \(\mathcal {O}(0.1)\) Yukawa coupling and \(\mathcal {O}(\mathrm{TeV})\) trilinear coupling \(\mu \).

For \(\mu \) positive (negative), the main constraint comes from \(\sigma _{gg}\) (\(\sigma _{\gamma \gamma }\)). This arises from the interference effect in the gg channel which is constructive for \(\mu >0\) and destructive for \(\mu <0\) (recalling that y is always assumed to be positive), while the \(\gamma \gamma \) channel has no such interference as it is contributed only by the octet scalars.

For a smaller Yukawa coupling \(y=0.2\), \(\mu \) is allowed to be either positive or negative. On the contrary, for a larger Yukawa coupling, only negative \(\mu \) survives. This also results from the interference effect, and implies that the Yukawa coupling cannot be too large for a positive \(\mu \).

As shown in Fig. 2, the allowed regions for the diphoton excess are not so sensitive to y, because y enters in \(\sigma _{\gamma \gamma }\) only indirectly through the gg channel.

The allowed values of \(\mu \) are smaller in the case of \((N_f,N_s)=(1,2)\) than \((N_f,N_s)=(2,1)\), simply because more charged particles contribute to the diphoton process in the former case.

Since the loop functions are more suppressed by heavier octet particles, a larger \(\mu \) is demanded to fulfill the observed diphoton excess.

The diphoton excess can also be explained naturally with \(\mathcal {O}(0.1)\) Yukawa coupling and \(\mathcal {O}(\mathrm{TeV})\) trilinear coupling \(\mu \) in the case of triplet fermions \(\chi \).

The lower and upper bound on \(\mu \) comes, respectively, from \(\sigma _{\gamma \gamma }\) and \(\sigma _{gg}\), since \(\mathrm{BR}(\Phi \rightarrow \gamma \gamma )\) is a constant in this case. This behavior is different from the singlet \(\rho \) case.

It is clear that \(\mu <0\) must be satisfied with a bigger \(y=0.75\) in the case of \((N_f,N_s)=(2,1)\). Meanwhile for the case of \((N_f,N_s)=(1,2)\), \(\mu >0\) is still allowed at \(y=0.75\).

The simple relation between \(\Gamma _{\Phi \rightarrow \gamma \gamma }^\chi \) and \(\Gamma _{\Phi \rightarrow gg}^\chi \) implies that the allowed bands in the y–\(\mu \) plane present a linear correlation. This is clearly shown in Fig. 4. Moreover, a larger \(m_S\) leads to an increase of the slope, and for the same \(m_S\) the slope for the \((N_f,N_s)=(2,1)\) scenario is steeper than that of \((N_f,N_s)=(1,2)\).
3 Conclusion
We have interpreted the \(750~\mathrm{GeV}\) diphoton excess in the framework of coloroctet neutrino mass model. In addition to a singlet scalar \(\Phi \) that plays the role of the \(750~\mathrm{GeV}\) resonance, the model introduces \(N_s\) species of coloroctet, electroweak doublet scalars S and \(N_f\) coloroctet fermions that can be an electroweak singlet \(\rho \) or triplet \(\chi \). The diphoton signal results from the production of \(\Phi \) via gluon fusion through coloroctet messengers and its subsequent decay into the diphoton through interactions with charged coloroctet particles. We find that for the triplet case \(\mathrm{BR}(\Phi \rightarrow \gamma \gamma )\) is a constant of about 0.1 %, while for the singlet case \(\mathrm{BR}(\Phi \rightarrow \gamma \gamma )\) can be varied. With the \(\mathcal {O}(0.1)\) Yukawa coupling y and the \(\mathcal {O}(\mathrm{TeV})\) trilinear coupling \(\mu \), both cases can explain the diphoton excess naturally without conflict with the current experimental limits. Meanwhile, the interference effect between the scalar and fermion octet particles plays a crucial role. The distinct features and allowed parameter space are discussed in detail for both cases, as well as for the two minimal scenarios of neutrino mass generation with \((N_f,N_s)=(2,1)\) or (1, 2).
Footnotes
 1.
This upper bound for the dijet cross section corresponds to the gg final state which dominates in our case. In the analysis of the bound the acceptance has been taken into account, whose number, however, was not available from Refs. [180, 181]. We will assume an acceptance of unity in our numerical analysis. A more realistic value of it will lead to a looser bound and thus permit a larger parameter space.
Notes
Acknowledgments
This work was supported in part by the Grants Nos. NSFC11025525, NSFC11575089 and by the CAS Center for Excellence in Particle Physics (CCEPP). Part of numerical analysis was done with the HPC Cluster of SKLTP/ITPCAS.
References
 1.The ATLAS collaboration, ATLASCONF2015081Google Scholar
 2.CMS Collaboration, CMSPASEXO15004Google Scholar
 3.V. Khachatryan et al., Phys. Lett. B 750, 494 (2015). arXiv:1506.02301 [hepex]
 4.G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 113(17), 171801 (2014). arXiv:1407.6583 [hepex]
 5.K. Harigaya, Y. Nomura, arXiv:1512.04850 [hepph]
 6.Y. Mambrini, G. Arcadi, A. Djouadi, arXiv:1512.04913 [hepph]
 7.M. Backovic, A. Mariotti, D. Redigolo, arXiv:1512.04917 [hepph]
 8.A. Angelescu, A. Djouadi, G. Moreau, arXiv:1512.04921 [hepph]
 9.Y. Nakai, R. Sato, K. Tobioka, arXiv:1512.04924 [hepph]
 10.S. Knapen, T. Melia, M. Papucci, K. Zurek, arXiv:1512.04928 [hepph]
 11.A. Pilaftsis, arXiv:1512.04931 [hepph]
 12.S. Di Chiara, L. Marzola, M. Raidal, arXiv:1512.04939 [hepph]
 13.T. Higaki, K.S. Jeong, N. Kitajima, F. Takahashi, arXiv:1512.05295 [hepph]
 14.S.D. McDermott, P. Meade, H. Ramani, arXiv:1512.05326 [hepph]
 15.J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz, T. You, arXiv:1512.05327 [hepph]
 16.M. Low, A. Tesi, L.T. Wang, arXiv:1512.05328 [hepph]
 17.B. Bellazzini, R. Franceschini, F. Sala, J. Serra, arXiv:1512.05330 [hepph]
 18.R.S. Gupta, S. Jager, Y. Kats, G. Perez, E. Stamou, arXiv:1512.05332 [hepph]
 19.C. Petersson, R. Torre, arXiv:1512.05333 [hepph]
 20.E. Molinaro, F. Sannino, N. Vignaroli, arXiv:1512.05334 [hepph]
 21.B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, T. Li, arXiv:1512.05439 [hepph]
 22.Q.H. Cao, Y. Liu, K.P. Xie, B. Yan, D.M. Zhang, arXiv:1512.05542 [hepph]
 23.S. Matsuzaki, K. Yamawaki, arXiv:1512.05564 [hepph]
 24.A. Kobakhidze, F. Wang, L. Wu, J.M. Yang, M. Zhang, arXiv:1512.05585 [hepph]
 25.R. Martinez, F. Ochoa, C.F. Sierra, arXiv:1512.05617 [hepph]
 26.P. Cox, A.D. Medina, T.S. Ray, A. Spray, arXiv:1512.05618 [hepph]
 27.D. Becirevic, E. Bertuzzo, O. Sumensari, R.Z. Funchal, arXiv:1512.05623 [hepph]
 28.J.M. No, V. Sanz, J. Setford, arXiv:1512.05700 [hepph]
 29.S.V. Demidov, D.S. Gorbunov, arXiv:1512.05723 [hepph]
 30.W. Chao, R. Huo, J.H. Yu, arXiv:1512.05738 [hepph]
 31.S. Fichet, G. von Gersdorff, C. Royon, arXiv:1512.05751 [hepph]
 32.D. Curtin, C.B. Verhaaren, arXiv:1512.05753 [hepph]
 33.L. Bian, N. Chen, D. Liu, J. Shu, arXiv:1512.05759 [hepph]
 34.J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal, T. Srivastava, arXiv:1512.05767 [hepph]
 35.A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion, Y. Jiang, arXiv:1512.05771 [hepph]
 36.P. Agrawal, J. Fan, B. Heidenreich, M. Reece, M. Strassler, arXiv:1512.05775 [hepph]
 37.C. Csaki, J. Hubisz, J. Terning, arXiv:1512.05776 [hepph]
 38.D. Aloni, K. Blum, A. Dery, A. Efrati, Y. Nir, arXiv:1512.05778 [hepph]
 39.Y. Bai, J. Berger, R. Lu, arXiv:1512.05779 [hepph]
 40.E. Gabrielli, K. Kannike, B. Mele, M. Raidal, C. Spethmann, H. Veermae, arXiv:1512.05961 [hepph]
 41.R. Benbrik, C.H. Chen, T. Nomura, arXiv:1512.06028 [hepph]
 42.J.S. Kim, J. Reuter, K. Rolbiecki, R.R. de Austri, arXiv:1512.06083 [hepph]
 43.A. Alves, A.G. Dias, K. Sinha, arXiv:1512.06091 [hepph]
 44.E. Megias, O. Pujolas, M. Quiros, arXiv:1512.06106 [hepph]
 45.L.M. Carpenter, R. Colburn, J. Goodman, arXiv:1512.06107 [hepph]
 46.J. Bernon, C. Smith, arXiv:1512.06113 [hepph]
 47.W. Chao, arXiv:1512.06297 [hepph]
 48.M.T. Arun, P. Saha, arXiv:1512.06335 [hepph]
 49.C. Han, H.M. Lee, M. Park, V. Sanz, arXiv:1512.06376 [hepph]
 50.S. Chang, arXiv:1512.06426 [hepph]
 51.I. Chakraborty, A. Kundu, arXiv:1512.06508 [hepph]
 52.R. Ding, L. Huang, T. Li, B. Zhu, arXiv:1512.06560 [hepph]
 53.H. Han, S. Wang, S. Zheng, arXiv:1512.06562 [hepph]
 54.X.F. Han, L. Wang, arXiv:1512.06587 [hepph]
 55.M.X. Luo, K. Wang, T. Xu, L. Zhang, G. Zhu, arXiv:1512.06670 [hepph]
 56.J. Chang, K. Cheung, C.T. Lu, arXiv:1512.06671 [hepph]
 57.D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri, T. Samui, arXiv:1512.06674 [hepph]
 58.T.F. Feng, X. Q. Li, H.B. Zhang, S.M. Zhao, arXiv:1512.06696 [hepph]
 59.O. Antipin, M. Mojaza, F. Sannino, arXiv:1512.06708 [hepph]
 60.F. Wang, L. Wu, J.M. Yang, M. Zhang, arXiv:1512.06715 [hepph]
 61.F.P. Huang, C.S. Li, Z.L. Liu, Y. Wang, arXiv:1512.06732 [hepph]
 62.W. Liao, H.Q. Zheng, arXiv:1512.06741 [hepph]
 63.J.J. Heckman, arXiv:1512.06773 [hepph]
 64.M. Dhuria, G. Goswami, arXiv:1512.06782 [hepph]
 65.X.J. Bi, Q.F. Xiang, P.F. Yin, Z.H. Yu, arXiv:1512.06787 [hepph]
 66.J.S. Kim, K. Rolbiecki, R.R. de Austri, arXiv:1512.06797 [hepph]
 67.L. Berthier, J.M. Cline, W. Shepherd, M. Trott, arXiv:1512.06799 [hepph]
 68.W.S. Cho, D. Kim, K. Kong, S.H. Lim, K.T. Matchev, J.C. Park, M. Park, arXiv:1512.06824 [hepph]
 69.J.M. Cline, Z. Liu, arXiv:1512.06827 [hepph]
 70.M. Bauer, M. Neubert, arXiv:1512.06828 [hepph]
 71.M. Chala, M. Duerr, F. Kahlhoefer, K. SchmidtHoberg, arXiv:1512.06833 [hepph]
 72.D. Barducci, A. Goudelis, S. Kulkarni, D. Sengupta, arXiv:1512.06842 [hepph]
 73.S.M. Boucenna, S. Morisi, A. Vicente, arXiv:1512.06878 [hepph]
 74.C.W. Murphy, arXiv:1512.06976 [hepph]
 75.A.E.C. Hernndez, I. Nisandzic, arXiv:1512.07165 [hepph]
 76.U.K. Dey, S. Mohanty, G. Tomar, arXiv:1512.07212 [hepph]
 77.G.M. Pelaggi, A. Strumia, E. Vigiani, arXiv:1512.07225 [hepph]
 78.J. de Blas, J. Santiago, R. VegaMorales, arXiv:1512.07229 [hepph]
 79.A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini, H. Serodio, arXiv:1512.07242 [hepph]
 80.P.S.B. Dev, D. Teresi, arXiv:1512.07243 [hepph]
 81.S. Moretti, K. Yagyu, arXiv:1512.07462 [hepph]
 82.W.C. Huang, Y.L.S. Tsai, T.C. Yuan, arXiv:1512.07268 [hepph]
 83.K.M. Patel, P. Sharma, arXiv:1512.07468 [hepph]
 84.M. Badziak, arXiv:1512.07497 [hepph]
 85.S. Chakraborty, A. Chakraborty, S. Raychaudhuri, arXiv:1512.07527 [hepph]
 86.Q.H. Cao, S.L. Chen, P.H. Gu, arXiv:1512.07541 [hepph]
 87.W. Altmannshofer, J. Galloway, S. Gori, A.L. Kagan, A. Martin, J. Zupan, arXiv:1512.07616 [hepph]
 88.M. Cvetic, J. Halverson, P. Langacker, arXiv:1512.07622 [hepph]
 89.J. Gu, Z. Liu, arXiv:1512.07624 [hepph]
 90.B.C. Allanach, P.S.B. Dev, S.A. Renner, K. Sakurai, arXiv:1512.07645 [hepph]
 91.H. Davoudiasl, C. Zhang, arXiv:1512.07672 [hepph]
 92.N. Craig, P. Draper, C. Kilic, S. Thomas, arXiv:1512.07733 [hepph]
 93.K. Das, S.K. Rai, arXiv:1512.07789 [hepph]
 94.K. Cheung, P. Ko, J.S. Lee, J. Park, P.Y. Tseng, arXiv:1512.07853 [hepph]
 95.J. Liu, X.P. Wang, W. Xue, arXiv:1512.07885 [hepph]
 96.J.A. Casas, J.R. Espinosa, J.M. Moreno, arXiv:1512.07895 [hepph]
 97.L.J. Hall, K. Harigaya, Y. Nomura, arXiv:1512.07904 [hepph]
 98.H. Han, S. Wang, S. Zheng, arXiv:1512.07992 [hepph]
 99.J.C. Park, S.C. Park, arXiv:1512.08117 [hepph]
 100.D. Chway, R. Dermisek, T.H. Jung, H. D. Kim, arXiv:1512.08221 [hepph]
 101.G. Li, Y.N. Mao, Y.L. Tang, C. Zhang, Y. Zhou, S.H. Zhu, arXiv:1512.08255 [hepph]
 102.M. Son, A. Urbano, arXiv:1512.08307 [hepph]
 103.Y.L. Tang, S.H. Zhu, arXiv:1512.08323 [hepph]
 104.H. An, C. Cheung, Y. Zhang, arXiv:1512.08378 [hepph]
 105.J. Cao, F. Wang, Y. Zhang, arXiv:1512.08392 [hepph]
 106.F. Wang, W. Wang, L. Wu, J.M. Yang, M. Zhang, arXiv:1512.08434 [hepph]
 107.C. Cai, Z.H. Yu, H.H. Zhang, arXiv:1512.08440 [hepph]
 108.Q.H. Cao, Y. Liu, K.P. Xie, B. Yan, D.M. Zhang, arXiv:1512.08441 [hepph]
 109.J.E. Kim, arXiv:1512.08467 [hepph]
 110.J. Gao, H. Zhang, H.X. Zhu, arXiv:1512.08478 [hepph]
 111.W. Chao, arXiv:1512.08484 [hepph]
 112.X.J. Bi et al., arXiv:1512.08497 [hepph]
 113.F. Goertz, J.F. Kamenik, A. Katz, M. Nardecchia, arXiv:1512.08500 [hepph]
 114.L.A. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lust, T.R. Taylor, arXiv:1512.08502 [hepph]
 115.P.S.B. Dev, R.N. Mohapatra, Y. Zhang, arXiv:1512.08507 [hepph]
 116.N. Bizot, S. Davidson, M. Frigerio, J.L. Kneur, arXiv:1512.08508 [hepph]
 117.L.E. Ibanez, V. MartinLozano, arXiv:1512.08777 [hepph]
 118.C.W. Chiang, M. Ibe, T.T. Yanagida, arXiv:1512.08895 [hepph]
 119.S.K. Kang, J. Song, arXiv:1512.08963 [hepph]
 120.Y. Hamada, T. Noumi, S. Sun, G. Shiu, arXiv:1512.08984 [hepph]
 121.X.J. Huang, W.H. Zhang, Y.F. Zhou, arXiv:1512.08992 [hepph]
 122.S. Kanemura, K. Nishiwaki, H. Okada, Y. Orikasa, S.C. Park, R. Watanabe, arXiv:1512.09048 [hepph]
 123.S. Kanemura, N. Machida, S. Odori, T. Shindou, arXiv:1512.09053 [hepph]
 124.I. Low, J. Lykken, arXiv:1512.09089 [hepph]
 125.A.E.C. Hernandez, arXiv:1512.09092 [hepph]
 126.Y. Jiang, Y.Y. Li, T. Liu, arXiv:1512.09127 [hepph]
 127.K. Kaneta, S. Kang, H.S. Lee, arXiv:1512.09129 [hepph]
 128.L. Marzola, A. Racioppi, M. Raidal, F.R. Urban, H. Veermae, arXiv:1512.09136 [hepph]
 129.E. Ma, arXiv:1512.09159 [hepph]
 130.A. Dasgupta, M. Mitra, D. Borah, arXiv:1512.09202 [hepph]
 131.S. Jung, J. Song, Y.W. Yoon, arXiv:1601.00006 [hepph]
 132.C.T. Potter, arXiv:1601.00240 [hepph]
 133.E. Palti, arXiv:1601.00285 [hepph]
 134.T. Nomura, H. Okada, arXiv:1601.00386 [hepph]
 135.X.F. Han, L. Wang, L. Wu, J.M. Yang, M. Zhang, arXiv:1601.00534 [hepph]
 136.P. Ko, Y. Omura, C. Yu, arXiv:1601.00586 [hepph]
 137.K. Ghorbani, H. Ghorbani, arXiv:1601.00602 [hepph]
 138.U. Danielsson, R. Enberg, G. Ingelman, T. Mandal, arXiv:1601.00624 [hepph]
 139.W. Chao, arXiv:1601.00633 [hepph]
 140.C. Csaki, J. Hubisz, S. Lombardo, J. Terning, arXiv:1601.00638 [hepph]
 141.A. Karozas, S.F. King, G.K. Leontaris, A.K. Meadowcroft, arXiv:1601.00640 [hepph]
 142.T. Modak, S. Sadhukhan, R. Srivastava, arXiv:1601.00836 [hepph]
 143.B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, T. Li, Q. Shafi, J.W. Walker, arXiv:1601.00866 [hepph]
 144.F.F. Deppisch, C. Hati, S. Patra, P. Pritimita, U. Sarkar, arXiv:1601.00952 [hepph]
 145.H. Ito, T. Moroi, Y. Takaesu, arXiv:1601.01144 [hepph]
 146.H. Zhang, arXiv:1601.01355 [hepph]
 147.A. Berlin, arXiv:1601.01381 [hepph]
 148.S. Bhattacharya, S. Patra, N. Sahoo, N. Sahu, arXiv:1601.01569 [hepph]
 149.I. Sahin, arXiv:1601.01676 [hepph]
 150.S. Fichet, G. von Gersdorff, C. Royon, arXiv:1601.01712 [hepph]
 151.D. Borah, S. Patra, S. Sahoo, arXiv:1601.01828 [hepph]
 152.D. Stolarski, R. VegaMorales, arXiv:1601.02004 [hepph]
 153.M. Fabbrichesi, A. Urbano, arXiv:1601.02447 [hepph]
 154.C. Hati, arXiv:1601.02457 [hepph]
 155.P. Ko, T. Nomura, arXiv:1601.02490 [hepph]
 156.J. Cao, L. Shang, W. Su, Y. Zhang, J. Zhu, arXiv:1601.02570 [hepph]
 157.D. Buttazzo, A. Greljo, D. Marzocca, arXiv:1512.04929 [hepph]
 158.A. Falkowski, O. Slone, T. Volansky, arXiv:1512.05777 [hepph]
 159.J. Cao, C. Han, L. Shang, W. Su, J.M. Yang, Y. Zhang, arXiv:1512.06728 [hepph]
 160.J. Zhang, S. Zhou, arXiv:1512.07889 [hepph]
 161.A. Salvio, A. Mazumdar, arXiv:1512.08184 [hepph]
 162.P. Fileviez Perez, M.B. Wise, Phys. Rev. D 80, 053006 (2009). arXiv:0906.2950 [hepph]ADSCrossRefGoogle Scholar
 163.X.G. He, H. Phoon, Y. Tang, G. Valencia, JHEP 1305, 026 (2013). doi: 10.1007/JHEP05(2013)026. arXiv:1303.4848 [hepph]ADSCrossRefGoogle Scholar
 164.A.V. Manohar, M.B. Wise, Phys. Rev. D 74, 035009 (2006). arXiv:hepph/0606172 ADSCrossRefGoogle Scholar
 165.M.I. Gresham, M.B. Wise, Phys. Rev. D 76, 075003 (2007). arXiv:0706.0909 [hepph]ADSCrossRefGoogle Scholar
 166.Y. Liao, J.Y. Liu, Phys. Rev. D 81, 013004 (2010). arXiv:0911.3711 [hepph]ADSCrossRefGoogle Scholar
 167.P. Fileviez Perez, T. Han, S. Spinner, M.K. Trenkel, JHEP 1101, 046 (2011). arXiv:1010.5802 [hepph]
 168.S. Choubey, M. Duerr, M. Mitra, W. Rodejohann, JHEP 1205, 017 (2012). arXiv:1201.3031 [hepph]ADSCrossRefGoogle Scholar
 169.C.Y. Chen, A. Freitas, T. Han, K.S.M. Lee, JHEP 1505, 135 (2015). arXiv:1410.8113 [hepph]ADSCrossRefGoogle Scholar
 170.T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010). arXiv:1010.4309 [hepph]ADSCrossRefGoogle Scholar
 171.V. Khachatryan et al. [CMS Collaboration], arXiv:1512.01224 [hepex]
 172.ATLAS Collaboration, arXiv:1512.01530 [hepex]
 173.V. Khachatryan et al. [CMS Collaboration], JHEP 1509, 201 (2015). arXiv:1505.08118 [hepex]
 174.V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 747, 98 (2015). arXiv:1412.7706 [hepex]
 175.G. Aad et al. [ATLAS Collaboration], JHEP 1510, 150 (2015). arXiv:1504.04605 [hepex]
 176.S. Chatrchyan et al. [CMS Collaboration], JHEP 1406, 055 (2014). doi: 10.1007/JHEP06(2014)055. arXiv:1402.4770 [hepex]
 177.G. Aad et al., JHEP 1406, 035 (2014). doi: 10.1007/JHEP06(2014)035. arXiv:1404.2500 [hepex]ADSCrossRefGoogle Scholar
 178.The ATLAS Collaboration, ATLASCONF2015067Google Scholar
 179.V. Khachatryan et al. [CMS Collaboration], arXiv:1602.06581 [hepex]
 180.G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 91(5), 052007 (2015). doi: 10.1103/PhysRevD.91.052007. arXiv:1407.1376 [hepex]
 181.CMS Collaboration, CMSPASEXO14005Google Scholar
 182.G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 114(8), 081802 (2015). arXiv:1406.5053 [hepex]
 183.G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75(9), 412 (2015). doi: 10.1140/epjc/s100520153628x. arXiv:1506.00285 [hepex]
 184.G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 92, 092004 (2015). doi: 10.1103/PhysRevD.92.092004. arXiv:1509.04670 [hepex]
 185.G. Aad et al. [ATLAS Collaboration], arXiv:1509.00389 [hepex]
 186.G. Aad et al. [ATLAS Collaboration], arXiv:1507.05930 [hepex]
 187.G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 738, 428 (2014). doi: 10.1016/j.physletb.2014.10.002. arXiv:1407.8150 [hepex]
 188.G. Aad et al. [ATLAS Collaboration], JHEP 1508, 148 (2015). arXiv:1505.07018 [hepex]
 189.V. Khachatryan et al. [CMS Collaboration], arXiv:1506.03062 [hepex]
 190.G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90(5), 052005 (2014). doi: 10.1103/PhysRevD.90.052005. arXiv:1405.4123 [hepex]
 191.A. Djouadi, Phys. Rept. 457, 1 (2008). doi: 10.1016/j.physrep.2007.10.004. arXiv:hepph/0503172 ADSCrossRefGoogle Scholar
 192.A. Djouadi, Phys. Rept. 459, 1 (2008). doi: 10.1016/j.physrep.2007.10.005. arXiv:hepph/0503173 ADSCrossRefGoogle Scholar
 193.S. Heinemeyer et al., LHC Higgs Cross Section Working Group Collaboration. doi: 10.5170/CERN2013004. arXiv:1307.1347 [hepph]
 194.
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funded by SCOAP^{3}